Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 573(7775): 573-577, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527826

RESUMO

It has long been suggested that climate shapes land surface topography through interactions between rainfall, runoff and erosion in drainage basins1-4. The longitudinal profile of a river (elevation versus distance downstream) is a key morphological attribute that reflects the history of drainage basin evolution, so its form should be diagnostic of the regional expression of climate and its interaction with the land surface5-9. However, both detecting climatic signatures in longitudinal profiles and deciphering the climatic mechanisms of their development have been challenging, owing to the lack of relevant global data and to the variable effects of tectonics, lithology, land surface properties and human activities10,11. Here we present a global dataset of 333,502 river longitudinal profiles, and use it to explore differences in overall profile shape (concavity) across climate zones. We show that river profiles are systematically straighter with increasing aridity. Through simple numerical modelling, we demonstrate that these global patterns in longitudinal profile shape can be explained by hydrological controls that reflect rainfall-runoff regimes in different climate zones. The most important of these is the downstream rate of change in streamflow, independent of the area of the drainage basin. Our results illustrate that river topography expresses a signature of aridity, suggesting that climate is a first-order control on the evolution of the drainage basin.


Assuntos
Clima , Modelos Teóricos , Rios , Hidrologia
3.
Sci Rep ; 6: 34438, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27688039

RESUMO

Shallow landslides, triggered by extreme rainfall, are a significant hazard in mountainous landscapes. The hazard posed by shallow landslides depends on the availability and strength of colluvial material in landslide source areas and the frequency and intensity of extreme rainfall events. Here we investigate how the time taken to accumulate colluvium affects landslide triggering rate in the Southern Appalachian Mountains, USA and how this may affect future landslide hazards. We calculated the failure potential of 283 hollows by comparing colluvium depths to the minimum (critical) soil depth required for landslide initiation in each hollow. Our data show that most hollow soil depths are close to their critical depth, with 62% of hollows having soils that are too thin to fail. Our results, supported by numerical modeling, reveal that landslide frequency in many humid landscapes may be insensitive to projected changes in the frequency of intense rainfall events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...