Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 36861-36881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758438

RESUMO

Water pollution due to emerging contaminants, e.g., pharmaceuticals, is one of the most frequently discussed issues. Among them, paracetamol received great attention due to its physico-chemical properties, persistence, and adverse environmental effects. Different techniques were employed for its degradation and, among them, photodegradation is considered one of the most suitable to pursue the aim. This work aimed to synthesize mesoporous TiO2, even with the presence of iron, through a one-pot method, with an enhanced ability to abate paracetamol. Precisely, pure and iron-containing (3.5 wt%) TiO2 were successfully obtained employing an uncommon procedure for this kind of material, mainly solution combustion synthesis (SCS). Moreover, a traditional hydrothermal method and a commercial Degussa P25 were also investigated for comparison purposes. The samples were characterized through N2-physisorption at - 196 °C, XRD, XPS, EDX, DR UV-Vis, and FESEM analysis. The catalytic activity was investigated for the abatement of 10 ppm of paracetamol, under UV irradiation in acidic conditions (pH = 3) and in the presence of H2O2. As a whole, the best-performing catalysts were those obtained through the SCS procedure, highlighting a complete removal of the organic pollutant after 1 h in the case of Fe/TiO2_SCS, thanks to its highly defective structure and the presence of metal Fe. To better investigate the performance of both pure and Fe-containing SCS samples, further oxidation tests were performed at pH = 7 and in the absence of H2O2. Noteworthy, in these conditions, the two samples exhibited different behaviors, highlighting different mechanisms depending on the presence or absence of iron in the structure. Finally, a kinetic study was conducted, demonstrating that a first order is suitable for its abatement.


Assuntos
Acetaminofen , Ferro , Fotólise , Titânio , Titânio/química , Acetaminofen/química , Catálise , Ferro/química , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38780851

RESUMO

This review explores a set of sustainable applications of clinoptilolite, a natural zeolite abundant around the world in different localities. Thanks to its physico-chemical properties this material is extremely versatile for several applications, ranging from environmental catalysis and CO2 removal to industrial and agricultural wastewater purification, aquaculture, animal feeding, and food industry but also medical applications and energy storage systems. Due to the presence of cations in its framework, it is possible to tune the material's features making it suitable for adsorbing specific compounds. Thus, this review aims to provide insight into developing new technologies based on the use of this material that is sustainable, not harmful for humans and animals, naturally abundant, and above all cost-effective. Furthermore, it is intended to promote the use of natural materials in various areas with a view to sustainability and to reduce as far as possible the use of chemicals or other materials whose synthesis process can have a polluting effect on the environment.

3.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431678

RESUMO

In recent decades, several abatement techniques have been proposed for organic dyes and metal cations. In this scenario, adsorption is the most known and studied. Clinoptilolite was considered, since it is a zeolite with a relatively low cost (200-600 $ tons-1) compared to the most well-known adsorbent used in wastewater treatment. In this work, Clinoptilolite was used for the adsorption of Methylene Blue (MB) at three different concentrations, namely, 100, 200, and 250 ppm. Furthermore, the adsorption capacity of the natural zeolite was compared with that of Activated Charcoal (250 ppm of MB). The two adsorbents were characterized by complementary techniques, such as N2 physisorption at -196 °C, X-ray diffraction, and field emission scanning electron microscopy. During the adsorption tests, Clinoptilolite exhibited the best adsorption capacities at 100 ppm: the abatement reached 98% (t = 15 min). Both Clinoptilolite and Activated Charcoal, at 250 ppm, exhibited the same adsorption capacities, namely, 96%. Finally, at 250 ppm MB, the adsorption capacity of Clinoptilolite was analyzed with the copresence of Zn2+ and Cd2+ (10 ppm), and the adsorption capacities were compared with those of Activated Charcoal. The results showed that both adsorbents achieved 100% MB abatement (t = 40 min). However, cation adsorption reached a plateau after 120 min (Zn2+ = 86% and 57%; Cd2+ = 53% and 50%, for Activated Charcoal and Clinoptilolite, respectively) due to the preferential adsorption of MB molecules. Furthermore, kinetic studies were performed to fully investigate the adsorption mechanism. It was evidenced that the pseudo-second-order kinetic model is effective in describing the adsorption mechanism of both adsorbents, highlighting the chemical interaction between the adsorbent and adsorbate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...