Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 294: 154188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295650

RESUMO

Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.


Assuntos
Sacarose , Fosfatos Açúcares , Humanos , Sacarose/metabolismo , Glicemia , Fosfatos Açúcares/metabolismo , Plantas/metabolismo , Fotossíntese , Trealose , Homeostase
2.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748053

RESUMO

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Trealose , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/genética
3.
J Exp Bot ; 74(17): 5088-5103, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37338600

RESUMO

Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion.


Assuntos
Flores , Triticum , Triticum/fisiologia , Grão Comestível
5.
Food Energy Secur ; 10(3): e292, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34594548

RESUMO

Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and sink-related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield-related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain-related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain-related traits. Gene-based prediction improved predictive ability for grain weight when gene effects were combined with the whole-genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.

6.
Biochem Soc Trans ; 48(5): 2127-2137, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33005918

RESUMO

The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.


Assuntos
Ácido Abscísico/metabolismo , Produtos Agrícolas/genética , Fosfatos Açúcares/química , Trealose/análogos & derivados , Processamento Alternativo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cromatina/metabolismo , Genoma de Planta , Homeostase , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Spliceossomos/metabolismo , Estresse Fisiológico , Trealose/química
7.
Food Energy Secur ; 9(4): e241, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33391733

RESUMO

Pressures of population growth and climate change require the development of resilient higher yielding crops, particularly to drought. A spring wheat diversity panel was developed to combine high-yield potential with resilience. To assess performance under drought, which in many environments is intermittent and dependent on plant development, 150 lines were grown with drought imposed for 10 days either at jointing or at anthesis stages in Obregon, Mexico. Both drought treatments strongly reduced grain numbers compared with the fully irrigated check. Best performers under drought at jointing had more grain than poor performers, while best performers under drought at anthesis had larger grain than poor performers. Most high-yielding lines were high yielding in one drought environment only. However, some of the best-performing lines displayed yield potential and resilience across two environments (28 lines), particularly for yield under well-watered and drought at jointing, where yield was most related to grain numbers. Strikingly, only three lines were high yielding across all three environments, and interestingly, these lines had high grain numbers. Among parameters measured in leaves and grain, leaf relative water content did not correlate with yield, and proline was negatively correlated with yield; there were small but significant relationships between leaf sugars and yield. This study provides a valuable resource for further crosses and for elucidating genes and mechanisms that may contribute to grain number and grain filling conservation to combine yield potential and drought resilience.

8.
J Exp Bot ; 71(3): 1039-1052, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31677263

RESUMO

Although sugar regulates photosynthesis, the signalling pathways underlying this process remain elusive, especially for C4 crops. To address this knowledge gap and identify potential candidate genes, we treated Setaria viridis (C4 model) plants acclimated to medium light intensity (ML, 500 µmol m-2 s-1) with low (LL, 50 µmol m-2 s-1) or high (HL, 1000 µmol m-2 s-1) light for 4 d and observed the consequences on carbon metabolism and the transcriptome of source leaves. LL impaired photosynthesis and reduced leaf content of signalling sugars (glucose, sucrose, and trehalose-6-phosphate). In contrast, HL strongly induced sugar accumulation without repressing photosynthesis. LL more profoundly impacted the leaf transcriptome, including photosynthetic genes. LL and HL contrastingly altered the expression of hexokinase (HXK) and sucrose-non-fermenting 1 (Snf1)-related protein kinase 1 (SnRK1) sugar sensors and trehalose pathway genes. The expression of key target genes of HXK and SnRK1 were affected by LL and sugar depletion, while surprisingly HL and strong sugar accumulation only slightly repressed the SnRK1 signalling pathway. In conclusion, we demonstrate that LL profoundly impacted photosynthesis and the transcriptome of S. viridis source leaves, while HL altered sugar levels more than LL. We also present the first evidence that sugar signalling pathways in C4 source leaves may respond to light intensity and sugar accumulation differently from C3 source leaves.


Assuntos
Metabolismo dos Carboidratos , Fotossíntese , Folhas de Planta/efeitos da radiação , Setaria (Planta)/efeitos da radiação , Transdução de Sinais , Aclimatação , Expressão Gênica , Luz , Folhas de Planta/metabolismo , Setaria (Planta)/metabolismo , Trealose/metabolismo
9.
J Exp Bot ; 71(7): 2270-2280, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31665486

RESUMO

Understanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited. Different approaches for improvement should be considered, namely is there genetic variation? Or if not, could genetic modification, genome editing, or alternative approaches be utilized? Currently, there are few examples where genetic modification has improved intrinsic yield in the field for commercial application in a major crop. Genome editing, particularly of negative yield regulators as a first step, is providing new opportunities. Here we highlight key mechanisms in source and sink, arguing that for large yield increases integration of key processes is likely to produce the biggest successes within the framework of crop ideotypes with optimized phenology. We highlight a plethora of recent papers that show breakthroughs in fundamental science and the promise of the trehalose 6-phosphate signalling pathway, which regulates carbohydrate allocation which is key for many crop traits.


Assuntos
Agricultura , Carbono , Fenótipo
11.
Plant Physiol ; 176(4): 2623-2638, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437777

RESUMO

Transgenic maize (Zea mays) that expresses rice (Oryza sativa) TREHALOSE PHOSPHATE PHOSPHATASE1 (TPP1) from the rice MADS6 promoter, which is active over the flowering period, produces higher yields than wild type. This yield increase occurs with or without drought conditions during flowering. To understand the mechanistic basis of the increased yield, we characterized gene expression and metabolite profiles in leaves and developing female reproductive tissue, comprising florets, node, pith, and shank, over the flowering period with and without drought. The MADS6 promoter was most active in the vasculature, particularly phloem companion cells in florets and pith, consistent with the largest decreases in trehalose 6-phosphate (T6P) levels (2- to 3-fold) being found in pith and florets. Low T6P led to decreased gene expression for primary metabolism and increased gene expression for secondary metabolism, particularly lipid-related pathways. Despite similar changes in gene expression, the pith and floret displayed opposing assimilate profiles: sugars, sugar phosphates, amino acids, and lipids increased in florets, but decreased in pith. Possibly explaining this assimilate distribution, seven SWEET genes were found to be up-regulated in the transgenic plants. SnRK1 activity and the expression of the gene for the SnRK1 beta subunit, expression of SnRK1 marker genes, and endogenous trehalose pathway genes were also altered. Furthermore, leaves of the transgenic maize maintained a higher photosynthetic rate for a longer period compared to wild type. In conclusion, we found that decreasing T6P in reproductive tissues down-regulates primary metabolism and up-regulates secondary metabolism, resulting in different metabolite profiles in component tissues. Our data implicate T6P/ SnRK1 as a major regulator of whole-plant resource allocation for crop yield improvement.


Assuntos
Flores/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Floema/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transgenes/genética , Trealose/metabolismo , Zea mays/enzimologia , Zea mays/genética
12.
J Exp Bot ; 68(16): 4455-4462, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981769

RESUMO

Food security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate. Current strategies to improve yield include conventional breeding, marker-assisted breeding, quantitative trait loci (QTLs), mutagenesis, creation of hybrids, genetic modification (GM), emerging genome-editing technologies, and chemical approaches. A regulatory mechanism amenable to three of these approaches has great promise for large yield improvements. Trehalose 6-phosphate (T6P) synthesized in the low-flux trehalose biosynthetic pathway signals the availability of sucrose in plant cells as part of a whole-plant sucrose homeostatic mechanism. Modifying T6P content by GM, marker-assisted selection, and novel chemistry has improved yield in three major cereals under a range of water availabilities from severe drought through to flooding. Yield improvements have been achieved by altering carbon allocation and how carbon is used. Targeting T6P both temporally and spatially offers great promise for large yield improvements in productive (up to 20%) and marginal environments (up to 120%). This opinion paper highlights this important breakthrough in fundamental science for crop improvement.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Melhoramento Vegetal/métodos , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Fotossíntese , Sementes/crescimento & desenvolvimento , Sacarose/metabolismo , Trealose/metabolismo , Triticum/crescimento & desenvolvimento
13.
J Sci Food Agric ; 97(14): 4663-4671, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28653336

RESUMO

Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Adaptação Fisiológica/genética , Agricultura , Animais , Cruzamento , Produtos Agrícolas/química , Produtos Agrícolas/genética , Meio Ambiente , Abastecimento de Alimentos , Resistência a Herbicidas/genética , Insetos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Plantas Geneticamente Modificadas , Seleção Genética , Sacarose/análise , Trealose/metabolismo
14.
BMC Plant Biol ; 17(1): 74, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403831

RESUMO

BACKGROUND: Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. RESULTS: A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g-1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). CONCLUSIONS: The impact of kernel excision from the ear triggers a cascade of events starting with the precipitous drop in Tre6P levels. It is proposed that the removal of Tre6P suppression of SnRK1 activity results in transcription of putative SnRK1 target genes, and the metabolic transition from biosynthesis to catabolism. This highlights the importance of Tre6P in the metabolic response to starvation. We also present evidence that sugars can mediate the activation of SnRK1. The precipitous drop in Tre6P corresponds to a large increase in transcription of ZmTPPA.3, indicating that this specific enzyme may be responsible for the de-phosphorylation of Tre6P. The high levels of Tre6P in the immature embryo are likely important for preventing kernel abortion.


Assuntos
Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/embriologia , Estresse Fisiológico/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Trealose/análogos & derivados , Zea mays/embriologia , Zea mays/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/efeitos dos fármacos , Sementes/genética , Estresse Fisiológico/genética , Sacarose/farmacologia , Trealose/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/genética
15.
Nature ; 540(7634): 574-578, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27974806

RESUMO

The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a 'signalling-precursor' concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

16.
Biochim Biophys Acta ; 1857(10): 1715-25, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27487250

RESUMO

Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement.


Assuntos
Transporte Biológico/fisiologia , Metabolismo dos Carboidratos/fisiologia , Plantas/metabolismo , Transdução de Sinais/fisiologia , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Aminoácidos/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Trealose/metabolismo
17.
Plant Physiol ; 169(2): 1072-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269545

RESUMO

Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves.


Assuntos
Proteínas de Plantas/metabolismo , Estresse Fisiológico , Trealose/metabolismo , Zea mays/fisiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Pressão Osmótica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/metabolismo , Cloreto de Sódio/farmacologia , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Zea mays/efeitos dos fármacos
18.
Front Plant Sci ; 5: 36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575108

RESUMO

Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.

19.
PLoS One ; 8(11): e80035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224034

RESUMO

Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Poaceae/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Biomassa , Secas , Regulação da Expressão Gênica de Plantas , Glicosilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poaceae/genética , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia
20.
BMC Plant Biol ; 10: 170, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20699011

RESUMO

BACKGROUND: Glucosinolates, a group of nitrogen and sulfur containing compounds associated with plant-insect interactions, are produced by a number of important Brassicaceae crop species. In Arabidopsis the AOP2 gene plays a role in the secondary modification of aliphatic (methionine-derived) glucosinolates, namely the conversion of methylsulfinylalkyl glucosinolates to form alkenyl glucosinolates, and also influences aliphatic glucosinolate accumulation. RESULTS: This study characterises the primary structural variation in the coding sequences of the AOP2 gene and identifies three different AOP2 alleles based on polymorphisms in exon two. To help determine the regulatory mechanisms mediating AOP2 expression amongst accessions, AOP2 5' regulatory regions were also examined however no major differences were identified. Expression of the AOP2 gene was found to be most abundant in leaf and stem tissue and was also found to be light dependent, with a number of light regulatory elements identified in the promoter region of the gene. In addition, a study was undertaken to demonstrate that the Arabidopsis AOP2 gene product is functional in planta. The over-expression of a functional AOP2 allele was found to successfully convert the precursor methylsulfinyl alkyl glucosinolate into the alkenyl form. CONCLUSIONS: The expression of the AOP2 gene has been found to be influenced by light and is most highly expressed in the photosynthetic parts of the Arabidopsis plant. The level of AOP2 transcript decreases rapidly in the absence of light. AOP2 exists as at least three alleles in different Arabidopsis accessions and we have demonstrated that one of these, AOP2-2, is functionally able to convert methylsulfinyl glucosinolates into the alkenyl form. The demonstration of the in planta functionality of the Arabisopsis AOP2 gene is an important step in determining the feasibility of engineering glucosinolate profiles in food plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Folhas de Planta/metabolismo , Animais , Sequência de Bases , Luz , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...