Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983875

RESUMO

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Atum , Animais , Ásia , Ecologia , Monitoramento Ambiental/métodos , Europa (Continente) , Cadeia Alimentar , Sedimentos Geológicos/química , Humanos , Metilação , Modelos Teóricos , América do Norte , Oceano Pacífico , Alimentos Marinhos , Água do Mar , Poluentes da Água , Poluentes Químicos da Água/análise
3.
Ecol Lett ; 13(7): 900-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497209

RESUMO

Expert knowledge in ecology is gaining momentum as a tool for conservation decision-making where data are lacking. Yet, little information is available to help a researcher decide whether expert opinion is useful for their model, how an elicitation should be conducted, what the most relevant method for elicitation is and how this can be translated into prior distributions for analysis in a Bayesian model. In this study, we provide guidance in using expert knowledge in a transparent and credible manner to inform ecological models and ultimately natural resource and conservation decision-making. We illustrate the decisions faced when considering the use of expert knowledge in a model with the help of two real ecological case studies. These examples are explored further to examine the impact of expert knowledge through 'priors' in Bayesian modeling and specifically how to minimize potential bias. Finally, we make recommendations on the use of expert opinion in ecology. We believe if expert knowledge is elicited and incorporated into ecological models with the same level of rigour provided in the collection and use of empirical data, expert knowledge can increase the precision of models and facilitate informed decision-making in a cost-effective manner.


Assuntos
Teorema de Bayes , Ecologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...