Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36551353

RESUMO

BACKGROUND: The presence of carbapenemase-producing bacteria (CPB) in animal hosts and along the food chain may result in the development of reservoirs for human infections. Several CPB strains isolated from animals have been reported, suggesting that transmission and dissemination of the corresponding genes between humans and animals may occur. Animal and food samples have complex backgrounds that hinder the detection of CPB present in low concentrations by standard detection procedures. METHODS: We evaluated the possibility of detecting blaKPC, blaVIM, and blaOXA-48-like carbapenemases in 286 animal and food samples (faeces from farm and companion animals, raw meat, bivalve molluscs) by culture-based and standard molecular methods and by ddPCR. RESULTS: The proposed ddPCR managed to detect the target genes, also in samples resulting negative to standard methods. While the presence of blaKPC and blaVIM was detected in few samples (~3%), one third of the samples (n = 94/283) carried different variants of blaOXA-48-like genes. CONCLUSION: A specific and sensitive method such as ddPCR could be suitable to evaluate the current veterinarian and environmental situation and to assess the dynamic transmission and persistence of CPB between animals and humans and vice versa.

2.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638677

RESUMO

Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.


Assuntos
Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/genética , Criança , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Osteoblastos/fisiologia , Osteogênese/genética
3.
PLoS One ; 13(7): e0200217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979772

RESUMO

The first draft genome sequencing of the non-model fungal pathogen Pyrenochaeta lycopersici showed an expansion of gene families associated with heterokaryon incompatibility and lacking of mating-type genes, providing insights into the genetic basis of this "imperfect" fungus which lost the ability to produce the sexual stage. However, due to the Illumina short-read technology, the draft genome was too fragmented to allow a comprehensive characterization of the genome, especially of the repetitive sequence fraction. In this work, the sequencing of another P. lycopersici isolate using long-read Single Molecule Real-Time sequencing technology was performed with the aim of obtaining a gapless genome. Indeed, a gapless genome assembly of 62.7 Mb was obtained, with a fraction of repetitive sequences representing 30% of the total bases. The gene content of the two P. lycopersici isolates was very similar, and the large difference in genome size (about 8 Mb) might be attributable to the high fraction of repetitive sequences detected for the new sequenced isolate. The role of repetitive elements, including transposable elements, in modulating virulence effectors is well established in fungal plant pathogens. Moreover, transposable elements are of fundamental importance in creating and re-modelling genes, especially in imperfect fungi. Their abundance in P. lycopersici, together with the large expansion of heterokaryon incompatibility genes in both sequenced isolates, suggest the presence of possible mechanisms alternative to gene re-assorting mediated by sexual recombination. A quite large fraction (~9%) of repetitive elements in P. lycopersici, has no homology with known classes, strengthening this hypothesis. The availability of a gapless genome of P. lycopersici allowed the in-depth analysis of its genome content, by annotating functional genes and TEs. This goal will be an important resource for shedding light on the evolution of the reproductive and pathogenic behaviour of this soilborne pathogen and the onset of a possible speciation within this species.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Sistemas Computacionais , Elementos de DNA Transponíveis , DNA Fúngico/genética , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA/métodos
4.
Front Mol Neurosci ; 10: 266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878621

RESUMO

CLN1 disease (OMIM #256730) is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1) is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1) and five selected CLN1 patients' mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2) positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs) in SH-p.wtCLN1 (as compared to empty-vector transfected cells), whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45) was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM) and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to the axonal and synaptic compartments), which can be associated with an altered gene dosage of wtCLN1. Moreover, these modules were interrelated with the pathological effects associated with loss of PPT1 function, similarly as observed in the Ppt1 knockout mice and patients with CLN1 disease.

6.
Sci Rep ; 6: 36423, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811978

RESUMO

The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Assuntos
Arabidopsis/metabolismo , GMP Cíclico/metabolismo , Resistência à Doença/fisiologia , Guanilato Ciclase/metabolismo , Animais , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/química , Glutationa/metabolismo , Guanilato Ciclase/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteoma/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Ratos , Transcriptoma
7.
PLoS One ; 10(7): e0132180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147798

RESUMO

Genetic testing, which is now a routine part of clinical practice and disease management protocols, is often based on the assessment of small panels of variants or genes. On the other hand, continuous improvements in the speed and per-base costs of sequencing have now made whole exome sequencing (WES) and whole genome sequencing (WGS) viable strategies for targeted or complete genetic analysis, respectively. Standard WGS/WES data analytical workflows generally rely on calling of sequence variants respect to the reference genome sequence. However, the reference genome sequence contains a large number of sites represented by rare alleles, by known pathogenic alleles and by alleles strongly associated to disease by GWAS. It's thus critical, for clinical applications of WGS and WES, to interpret whether non-variant sites are homozygous for the reference allele or if the corresponding genotype cannot be reliably called. Here we show that an alternative analytical approach based on the analysis of both variant and non-variant sites from WGS data allows to genotype more than 92% of sites corresponding to known SNPs compared to 6% genotyped by standard variant analysis. These include homozygous reference sites of clinical interest, thus leading to a broad and comprehensive characterization of variation necessary to an accurate evaluation of disease risk. Altogether, our findings indicate that characterization of both variant and non-variant clinically informative sites in the genome is necessary to allow an accurate clinical assessment of a personal genome. Finally, we propose a highly efficient extended VCF (eVCF) file format which allows to store genotype calls for sites of clinical interest while remaining compatible with current variant interpretation software.


Assuntos
Alelos , Genoma Humano , Estudo de Associação Genômica Ampla , Homozigoto , Síndrome do QT Longo/genética , Polimorfismo de Nucleotídeo Único , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
8.
PLoS One ; 10(5): e0122879, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955391

RESUMO

The cosmopolitan ascidian Ciona intestinalis is the most common model species of Tunicata, the sister-group of Vertebrata, and widely used in developmental biology, genomics and evolutionary studies. Recently, molecular studies suggested the presence of cryptic species hidden within the C. intestinalis species, namely C. intestinalis type A and type B. So far, no substantial morphological differences have been identified between individuals belonging to the two types. Here we present morphometric, immunohistochemical, and histological analyses, as well as 3-D reconstructions, of late larvae obtained by cross-fertilization experiments of molecularly determined type A and type B adults, sampled in different seasons and in four different localities. Our data point to quantitative and qualitative differences in the trunk shape of larvae belonging to the two types. In particular, type B larvae exhibit a longer pre-oral lobe, longer and relatively narrower total body length, and a shorter ocellus-tail distance than type A larvae. All these differences were found to be statistically significant in a Discriminant Analysis. Depending on the number of analyzed parameters, the obtained discriminant function was able to correctly classify > 93% of the larvae, with the remaining misclassified larvae attributable to the existence of intra-type seasonal variability. No larval differences were observed at the level of histology and immunohistochemical localization of peripheral sensory neurons. We conclude that type A and type B are two distinct species that can be distinguished on the basis of larval morphology and molecular data. Since the identified larval differences appear to be valid diagnostic characters, we suggest to raise both types to the rank of species and to assign them distinct names.


Assuntos
Ciona intestinalis/anatomia & histologia , Ciona intestinalis/classificação , Animais , Ciona intestinalis/citologia , Ciona intestinalis/ultraestrutura , Larva/anatomia & histologia , Larva/classificação , Larva/citologia , Larva/ultraestrutura , Modelos Anatômicos , Células Receptoras Sensoriais/citologia
9.
Genome Biol Evol ; 6(3): 591-605, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24572017

RESUMO

Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events.


Assuntos
Ciona intestinalis/classificação , Ciona intestinalis/genética , Evolução Molecular , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Ordem dos Genes , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
10.
Elife ; 2: e00569, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23840927

RESUMO

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI:http://dx.doi.org/10.7554/eLife.00569.001.


Assuntos
Cordados/genética , Genoma , Animais , Cordados/classificação , Cordados/fisiologia , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reprodução
11.
Genome Biol Evol ; 5(6): 1185-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709623

RESUMO

Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the Phlebobranchia-Thaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate.


Assuntos
Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Urocordados/genética , Animais , Sequência de Bases , Ordem dos Genes , Rearranjo Gênico , Dados de Sequência Molecular , Filogenia
12.
PLoS One ; 7(10): e47538, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077630

RESUMO

According to the tRNA punctuation model, the mitochondrial genome (mtDNA) of mammals and arthropods is transcribed as large polycistronic precursors that are maturated by endonucleolytic cleavage at tRNA borders and RNA polyadenylation. Starting from the newly sequenced mtDNA of Ixodes ricinus and using a combination of mitogenomics and transcriptional analyses, we found that in all currently-sequenced tick lineages (Prostriata, Metastriata and Argasidae) the 3'-end of the polyadenylated nad1 and rrnL transcripts does not follow the tRNA punctuation model and is located upstream of a degenerate 17-bp DNA motif. A slightly different motif is also present downstream the 3'-end of nad1 transcripts in the primitive chelicerate Limulus polyphemus and in Drosophila species, indicating the ancient origin and the evolutionary conservation of this motif in arthropods. The transcriptional analyses suggest that this motif directs the 3'-end formation of the nad1/rrnL mature RNAs, likely working as a transcription termination signal or a processing signal of precursor transcripts. Moreover, as most regulatory elements, this motif is characterized by a taxon-specific evolution. Although this signal is not exclusive of ticks, making a play on words it has been named "Tick-Box", since it is a check mark that has to be verified for the 3'-end formation of some mt transcripts, and its consensus sequence has been here carefully characterized in ticks. Indeed, in the whole mtDNA of all ticks, the Tick-Box is always present downstream of nad1 and rrnL, mainly in non-coding regions (NCRs) and occasionally within trnL(CUN). However, some metastriates present a third Tick-Box at an intriguing site--inside the small NCR located at one end of a 3.4 kb translocated region, the other end of which exhibits the nad1 Tick-Box--hinting that this motif could have been involved in metastriate gene order rearrangements.


Assuntos
DNA Mitocondrial/genética , Motivos de Nucleotídeos/genética , RNA de Transferência/genética , Transcrição Gênica , Animais , Drosophila/genética , Evolução Molecular , Caranguejos Ferradura/genética , Ixodes/genética , Conformação de Ácido Nucleico , Filogenia , RNA Ribossômico/genética
13.
Nucleic Acids Res ; 40(Database issue): D1168-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123747

RESUMO

The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa.


Assuntos
DNA Mitocondrial/química , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Genoma Mitocondrial , Mudança da Fase de Leitura do Gene Ribossômico , Genes Mitocondriais , Íntrons , Proteínas Mitocondriais/genética , Anotação de Sequência Molecular , Software
14.
Mol Biol Evol ; 27(2): 211-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19797354

RESUMO

The few sequenced mitochondrial (mt) genomes of the class Ascidiacea (Chordata, Tunicata), mostly belonging to congeneric species of the Phlebobranchia order, show extraordinary gene order rearrangements. In order to assess if this hypervariability in gene order is a general feature of Ascidiacea, we report here the gene arrangement of five ascidians belonging to the Aplousobranchia and Stolidobranchia orders. Our data show that Ascidiacea are characterized by: 1) extensive gene order rearrangements both within and between the three major lineages; 2) lack of significant similarities to the gene order of other deuterostomes; and 3) an extent of rearrangements comparable with that of Mollusca (especially the Gastropoda, Bivalvia, and Scaphopoda classes), a phylum with highly rearranged mtDNAs. The only conserved feature is the location of all genes on the same strand, which suggests that selective constraints are related to the mt transcription. Finally, a higher mobility of the tRNA genes is undetectable because of saturation effect, and only the partially conserved cox2-cob gene block seems to retain some phylogenetic signals.


Assuntos
Ordem dos Genes/genética , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Instabilidade Genômica , Urocordados/genética , Animais , Modelos Genéticos
15.
BMC Evol Biol ; 7: 155, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17764550

RESUMO

BACKGROUND: Within Chordata, the subphyla Vertebrata and Cephalochordata (lancelets) are characterized by a remarkable stability of the mitochondrial (mt) genome, with constancy of gene content and almost invariant gene order, whereas the limited mitochondrial data on the subphylum Tunicata suggest frequent and extensive gene rearrangements, observed also within ascidians of the same genus. RESULTS: To confirm this evolutionary trend and to better understand the evolutionary dynamics of the mitochondrial genome in Tunicata Ascidiacea, we have sequenced and characterized the complete mt genome of two congeneric ascidian species, Phallusia mammillata and Phallusia fumigata (Phlebobranchiata, Ascidiidae). The two mtDNAs are surprisingly rearranged, both with respect to one another and relative to those of other tunicates and chordates, with gene rearrangements affecting both protein-coding and tRNA genes. The new data highlight the extraordinary variability of ascidian mt genome in base composition, tRNA secondary structure, tRNA gene content, and non-coding regions (number, size, sequence and location). Indeed, both Phallusia genomes lack the trnD gene, show loss/acquisition of DHU-arm in two tRNAs, and have a G+C content two-fold higher than other ascidians. Moreover, the mt genome of P. fumigata presents two identical copies of trnI, an extra tRNA gene with uncertain amino acid specificity, and four almost identical sequence regions. In addition, a truncated cytochrome b, lacking a C-terminal tail that commonly protrudes into the mt matrix, has been identified as a new mt feature probably shared by all tunicates. CONCLUSION: The frequent occurrence of major gene order rearrangements in ascidians both at high taxonomic level and within the same genus makes this taxon an excellent model to study the mechanisms of gene rearrangement, and renders the mt genome an invaluable phylogenetic marker to investigate molecular biodiversity and speciation events in this largely unexplored group of basal chordates.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Urocordados/genética , Animais , Composição de Bases , Citocromos b/genética , DNA Mitocondrial/genética , Ordem dos Genes , Rearranjo Gênico , Genes de RNAr , Fases de Leitura Aberta , RNA de Transferência/genética , RNA não Traduzido/genética , Urocordados/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...