Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(10): 2494-2504, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38170794

RESUMO

At the time when pathogens are developing robust resistance to antibiotics, the demand for implant surfaces with microbe-killing capabilities has significantly risen. To achieve this goal, profound understanding of the underlying mechanisms is crucial. Our study demonstrates that graphene oxide (GO) nano films deposited on stainless steel (SS316L) exhibit superior antibacterial features. The physicochemical properties of GO itself play a pivotal role in influencing biological events and their diversity may account for the contradictory results reported elsewhere. However, essential properties of GO coatings, such as oxygen content and the resulting electrical conductivity, have been overlooked so far. We hypothesize that the surface potential and electrical resistance of the oxygen content in the GO-nano films may induce bacteria-killing events on conductive metallic substrates. In our study, the GO applied contains 52 wt% of oxygen, and thus exhibits insulating properties. When deposited as a nano film on an electrically conducting steel substrate, GO flakes generate a Schottky barrier at the interface. This barrier, consequently, impedes the transfer of electrons to the underlying conductive substrate. As a result, this creates reactive oxygen species (ROS), leading to bacterial death. We confirmed the presence of GO coatings and their hydrolytic stability by using X-ray photoelectron spectroscopy (XPS), µRaman spectroscopy, scanning electron microscopy (SEM), and Kelvin probe force microscopy (KPFM) measurements. The biological evaluation was performed on the MG63 osteoblast-like cell line and two selected bacteria species: S. aureus and P. aeruginosa, demonstrating both the cytocompatibility and antibacterial behavior of GO-coated SS316L substrates. We propose a two-step bactericidal mechanism: electron transfer from the bacteria membrane to the substrate, followed by ROS generation. This mechanism finds support in changes observed in contact angle, surface potential, and work function, identified as decisive factors. By addressing overlooked factors and effectively bridging the gap between understanding and practicality, we present a transformative approach for implant surfaces, combating microbial resistance, and offering new application possibilitie.


Assuntos
Antibacterianos , Grafite , Staphylococcus aureus , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Metais/farmacologia , Oxigênio/farmacologia
2.
Front Psychol ; 14: 1160605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37794908

RESUMO

When viewing a completely ambiguous image, different interpretations can switch involuntarily due to internal top-down processing. In the case of the Necker cube, an entirely ambiguous stimulus, observers often display a bias in perceptual switching between two interpretations based on their perspectives: one with a from-above perspective (FA) and the other with a from-below perspective (FB). Typically, observers exhibit a priori top-down bias in favor of the FA interpretation, which may stem from a statistical tendency in everyday life where we more frequently observe objects from above. However, it remains unclear whether this perceptual bias persists when individuals voluntarily decide on the Necker cube's interpretation in goal-directed behavior, and the impact of ambiguity in this context is not well-understood. In our study, we instructed observers to voluntarily identify the orientation of a Necker cube while manipulating its ambiguity from low (LA) to high (HA). Our investigation aimed to test two hypotheses: (i) whether the perspective (FA or FB) would result in a bias in response time, and (ii) whether this bias would depend on the level of stimulus ambiguity. Additionally, we analyzed electroencephalogram (EEG) signals to identify potential biomarkers that could explain the observed perceptual bias. The behavioral results confirmed a perceptual bias in favor of the from-above perspective, as indicated by shorter response times. However, this bias diminished for stimuli with high ambiguity. For the LA stimuli, the occipital theta-band power consistently exceeded the frontal theta-band power throughout most of the decision-making time. In contrast, for the HA stimuli, the frontal theta-band power started to exceed the occipital theta-band power during the 0.3-s period preceding the decision. We propose that occipital theta-band power reflects evidence accumulation, while frontal theta-band power reflects its evaluation and decision-making processes. For the FB perspective, occipital theta-band power exhibited higher values and dominated over a longer duration, leading to an overall increase in response time. These results suggest that more information and more time are needed to encode stimuli with a FB perspective, as this template is less common for the observers compared to the template for a cube with a FA perspective.

3.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430576

RESUMO

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Humanos , Ritmo Teta , Imagens, Psicoterapia , Projetos de Pesquisa
4.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991871

RESUMO

In this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy. We also identified several psycho-physiological parameters that were associated with shooting outcomes, including EEG biomarkers. In particular, we observed an increase in head-averaged delta and right temporal alpha EEG power before missing shots, as well as a negative correlation between theta-band energies in the frontal and central brain regions and shooting success. Our findings suggest that the multimodal analysis approach has the potential to be highly informative in studying the complex processes involved in visual-motor control learning and may be useful for optimizing training processes.


Assuntos
Desempenho Psicomotor , Esportes , Humanos , Desempenho Psicomotor/fisiologia , Psicofisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Eletroencefalografia
5.
Artigo em Inglês | MEDLINE | ID: mdl-34343094

RESUMO

In this study, we address the issue of whether vibrotactile feedback can enhance the motor cortex excitability translated into the plastic changes in local cortical areas during motor imagery (MI) BCI-based training. For this purpose, we focused on two of the most notable neurophysiological effects of MI - the event-related desynchronization (ERD) level and the increase in cortical excitability assessed with navigated transcranial magnetic stimulation (nTMS). For TMS navigation, we used individual high-resolution 3D brain MRIs. Ten BCI-naive and healthy adults participated in this study. The MI (rest or left/right hand imagery using Graz-BCI paradigm) tasks were performed separately in the presence and absence of feedback. To investigate how much the presence/absence of vibrotactile feedback in MI BCI-based training could contribute to the sensorimotor cortical activations, we compared the MEPs amplitude during MI after training with and without feedback. In addition, the ERD levels during MI BCI-based training were investigated. Our findings provide evidence that applying vibrotactile feedback during MI training leads to (i) an enhancement of the desynchronization level of mu-rhythm EEG patterns over the contralateral motor cortex area corresponding to the MI of the non-dominant hand; (ii) an increase in motor cortical excitability in hand muscle representation corresponding to a muscle engaged by the MI.


Assuntos
Interfaces Cérebro-Computador , Excitabilidade Cortical , Neurorretroalimentação , Adulto , Eletroencefalografia , Humanos , Imaginação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...