Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parkinsons Dis ; 12(3): 831-850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34957950

RESUMO

BACKGROUND: Parkinson's disease (PD) is a relentless, chronic neurodegenerative disease characterized by the progressive loss of substantia nigra (SN) neurons that leads to the onset of motor and non-motor symptoms. Standard of care for PD consists of replenishing the loss of dopamine through oral administration of Levodopa; however, this treatment is not disease-modifying and often induces intolerable side effects. While the etiology that contributes to PD is largely unknown, emerging evidence in animal models suggests that a significant reduction in neuroprotective Protein Kinase A (PKA) signaling in the SN contributes to PD pathogenesis, suggesting that restoring PKA signaling in the midbrain may be a new anti-PD therapeutic alternative. OBJECTIVE: We surmised that pharmacological activation of PKA via intraperitoneal administration of Forskolin exerts anti-PD effects in symptomatic PTEN-induced kinase 1 knockout (PINK1-KO), a bona fide in vivo model of PD. METHODS: By using a beam balance and a grip strength analyzer, we show that Forskolin reverses motor symptoms and loss of hindlimb strength with long-lasting therapeutic effects (> 5 weeks) following the last dose. RESULTS: In comparison, intraperitoneal treatment with Levodopa temporarily (24 h) reduces motor symptoms but unable to restore hindlimb strength in PINK1-KO rats. By using immunohistochemistry and an XF24e BioAnalyzer, Forskolin treatment reverses SN neurons loss, elevates brain energy production and restores PKA activity in SN in symptomatic PINK1-KO rats. CONCLUSION: Overall, our collective in vivo data suggest that Forskolin is a promising disease-modifying therapeutic alternative for PD and is superior to Levodopa because it confers long-lasting therapeutic effects.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Colforsina/metabolismo , Colforsina/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Levodopa/farmacologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos , Substância Negra/patologia
2.
PeerJ ; 9: e11483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055494

RESUMO

BACKGROUND: Chronic psychological distress is considered today a pandemic due to the modern lifestyle and has been associated with various neurodegenerative, autoimmune, or systemic inflammation-related diseases. Stress is closely related to liver disease exacerbation through the high activity of the endocrine and autonomic nervous systems, and the connection between the development of these pathologies and the physiological effects induced by oxidative stress is not yet completely understood. The use of nootropics, as the cognitive enhancer and antioxidant piracetam, is attractive to repair the oxidative damage. A proteomic approach provides the possibility to obtain an in-depth comprehension of the affected cellular processes and the possible consequences for the body. Therefore, we considered to describe the effect of distress and piracetam on the liver proteome. METHODS: We used a murine model of psychological stress by predatory odor as a distress paradigm. Female Sprague-Dawley rats were distributed into four experimental groups (n = 6 - 7/group) and were exposed or not to the stressor for five days and treated or not with piracetam (600 mg/kg) for six days. We evaluated the liver proteome by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D-SDS-PAGE) followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Besides, we analyzed the activity of liver antioxidant enzymes, the biochemical parameters in plasma and rat behavior. RESULTS: Our results showed that distress altered a wide range of proteins involved in amino acids metabolism, glucose, and fatty acid mobilization and degradation on the way to produce energy, protein folding, trafficking and degradation, redox metabolism, and its implications in the development of the non-alcoholic fatty liver disease (NAFLD). Piracetam reverted the changes in metabolism caused by distress exposure, and, under physiological conditions, it increased catabolism rate directed towards energy production. These results confirm the possible relationship between chronic psychological stress and the progression of NAFLD, as well as we newly evidenced the controversial beneficial effects of piracetam. Finally, we propose new distress biomarkers in the liver as the protein DJ-1 (PARK7), glutathione peroxidase 1 (GPX), peroxiredoxin-5 (PRDX5), glutaredoxin 5 (GLRX5), and thioredoxin reductase 1 (TXNDR1), and in plasma as biochemical parameters related to kidney function such as urea and blood urea nitrogen (BUN) levels.

3.
Brain Res ; 1749: 147117, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971085

RESUMO

Early life stress alters the function and feedback regulation of the hypothalamic-pituitaryadrenal (HPA) axis, and can contribute to neuroinflammation and neurodegeneration by modifying peripheral blood mononuclear cell (PBMC) activity. The retina, as part of the nervous system, is sensitive to immune changes induced by stress. However, the consequences of stress experienced at an early age on retinal development have not yet been elucidated. Here we aimed to evaluate the impact of maternal separation (MatSep) across three stages of the lifespan (adolescent, adult, and aged) on the retina, as well as on progression through the cell cycle and mitochondrial activity in PBMCs from female Wistar rats. Newborn pups were separated from their mother from postnatal day (PND) 2 until PND 14 for 3 h/day. Retinal analysis from the MatSep groups showed architectural alterations such as a diminished thickness of retinal layers, as well as increased expression of proinflammatory markers DJ-1, Iba-1, and CD45 and the gliotic marker GFAP. Additionally, MatSep disrupted the cell cycle and caused long-term increases in mitochondrial activity in PBMCs from adolescent and adult rats. Changes in the cell cycle profile of the PBMCs from aged MatSep rats were undetected. However, these PBMCs exhibited increased sensitivity to H2O2-induced oxidative stress in vitro. Therefore, these results suggest that early life stress can have long-term effects on retinal structure and function, possibly elicited by neonatal immune preconditioning.


Assuntos
Leucócitos Mononucleares/metabolismo , Privação Materna , Retina/metabolismo , Estresse Psicológico/metabolismo , Animais , Ciclo Celular/fisiologia , Feminino , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
4.
Sci Rep ; 10(1): 9820, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555260

RESUMO

Psychological distress induces oxidative stress and alters mitochondrial metabolism in the nervous and immune systems. Psychological distress promotes alterations in brain metabolism and neurochemistry in wild-type (WT) rats in a similar manner as in Parkinsonian rats lacking endogenous PTEN-induced kinase 1 (PINK1), a serine/threonine kinase mutated in a recessive forms of Parkinson's disease. PINK1 has been extensively studied in the brain, but its physiological role in peripheral tissues and the extent to which it intersects with the neuroimmune axis is not clear. We surmised that PINK1 modulates the bioenergetics of peripheral blood mononuclear cells (PBMCs) under basal conditions or in situations that promote oxidative stress as psychological distress. By using an XF metabolic bioanalyzer, PINK1-KO-PBMCs showed significantly increased oxidative phosphorylation and basal glycolysis compared to WT cells and correlated with motor dysfunction. In addition, psychological distress enhanced the glycolytic capacity in PINK1-KO-PBMCs but not in WT-PBMCs. The level of antioxidant markers and brain-derived neurotrophic factor were altered in PINK1-KO-PBMCs and by psychological distress. In summary, our data suggest that PINK1 is critical for modulating the bioenergetics and antioxidant responses in PBMCs whereas lack of PINK1 upregulates compensatory glycolysis in response to oxidative stress induced by psychological distress.


Assuntos
Metabolismo Energético , Leucócitos Mononucleares/metabolismo , Proteínas Quinases/deficiência , Angústia Psicológica , Animais , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Respiração Celular , Feminino , Regulação da Expressão Gênica , Glicólise , Masculino , Mitocôndrias/metabolismo , Ratos
5.
Mol Neurobiol ; 57(4): 1781-1798, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31836946

RESUMO

Psychological distress is a public health issue as it contributes to the development of human diseases including neuropathologies. Parkinson's disease (PD), a chronic, progressive neurodegenerative disorder, is caused by multiple factors including aging, mitochondrial dysfunction, and/or stressors. In PD, a substantial loss of substantia nigra (SN) neurons leads to rigid tremors, bradykinesia, and chronic fatigue. Several studies have reported that the hypothalamic-pituitary-adrenal (HPA) axis is altered in PD patients, leading to an increase level of cortisol which contributes to neurodegeneration and oxidative stress. We hypothesized that chronic psychological distress induces PD-like symptoms and promotes neurodegeneration in wild-type (WT) rats and exacerbates PD pathology in PINK1 knockout (KO) rats, a well-validated animal model of PD. We measured the bioenergetics profile (oxidative phosphorylation and glycolysis) in the brain by employing an XF24e Seahorse Extracellular Flux Analyzer in young rats subjected to predator-induced psychological distress. In addition, we analyzed anxiety-like behavior, motor function, expression of antioxidant enzymes, mitochondrial content, and neurotrophic factors brain-derived neurotrophic factor (BDNF) in the brain. Overall, we observed that psychological distress diminished up to 50% of mitochondrial respiration and glycolysis in the prefrontal cortex (PFC) derived from both WT and PINK1-KO rats. Mechanistically, the level of antioxidant proteins, mitochondrial content, and BDNF was significantly altered. Finally, psychological distress robustly induced anxiety and Parkinsonian symptoms in WT rats and accelerated certain symptoms of PD in PINK1-KO rats. For the first time, our collective data suggest that psychological distress can phenocopy several aspects of PD neuropathology, disrupt brain energy production, as well as induce ataxia-like behavior.


Assuntos
Encéfalo/fisiopatologia , Mitocôndrias/patologia , Atividade Motora , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Estresse Psicológico/fisiopatologia , Animais , Antioxidantes/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Metabolismo Energético , Espaço Extracelular/metabolismo , Feminino , Masculino , Fatores de Crescimento Neural/metabolismo , Consumo de Oxigênio , Proteínas Quinases/metabolismo , Ratos Long-Evans
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 475-483, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29966903

RESUMO

Chronic psychological stress is an important public health issue which generates behavioral changes, anxiety, immunosuppression and oxidative damage. Piracetam is a cognitive enhancer, at cellular level it protects from oxidative stress. The aim of this study was to evaluate the effect of psychological stress and of piracetam on circulating mononuclear cells by analyzing the biochemical spectrome using Synchrotron Radiation Fourier Transform Infrared Microspectroscopy (SR-µFTIR). Rats were exposed for five days to a stressor (cat odor) under oral administration of piracetam (600 mg/kg). SR-µFTIR analysis showed a decrease in bands associated to the lipids region (2852 cm-1, 2923 cm-1 and 2962 cm-1) and an increase absorption of the amide I band (1654 cm-1) under stress conditions. The principal component analysis showed increase oxidation of lipids (decrease of 3010 cm-1, 2923 cm-1 and 2852 cm-1 bands) as well as proteins denaturation (increase of 1610 cm-1 and 1690 cm-1 bands) under stress. Piracetam provided protection to polyunsaturated lipids (p ≤ 0.001) and lipids/proteins ratio (p ≤ 0.001). Behaviorally, this drug diminished fear and anxiety in stressed animals by the plus maze test (p ≤ 0.002). However, this drug induced oxidative stress in mononuclear cells from unstressed animals and altered their behavior.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Nootrópicos , Piracetam , Estresse Psicológico/sangue , Administração Oral , Animais , Biomarcadores/sangue , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Nootrópicos/administração & dosagem , Nootrópicos/farmacologia , Piracetam/administração & dosagem , Piracetam/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...