Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Death Discov ; 9(1): 451, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086808

RESUMO

Sphingolipid metabolism is dysregulated in many cancers, allowing cells to evade apoptosis through increased sphingosine-1-phosphate (S1P) and decreased ceramides. Ceramidases hydrolyze ceramides to sphingosine, which is phosphorylated by sphingosine kinases to generate S1P. The S1P allows cells to evade apoptosis by shifting the equilibrium away from ceramides, which favor cell death. One tumor type that exhibits a shift in the sphingolipid balance towards S1P is glioblastoma (GBM), a highly aggressive brain tumor. GBMs almost always recur despite surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Understanding sphingolipid metabolism in GBM is still limited, and currently, there are no approved treatments to target dysregulation of sphingolipid metabolism in GBM. Carmofur, a derivative of 5-fluorouracil, inhibits acid ceramidase (ASAH1), a key enzyme in the production of S1P, and is in use outside the USA to treat colorectal cancer. We find that the mRNA for ASAH1, but not other ceramidases, is elevated in recurrent GBM. When TMZ-resistant GBM cells were treated with carmofur, decreased cell growth and increased apoptosis were observed along with cell cycle perturbations. RNA-sequencing identified decreases in cell cycle control pathways that were specific to TMZ-resistant cells. Furthermore, the transcription factor and G1 to S phase regulator, E2F8, was upregulated in TMZ-resistant versus parental GBM cells and inhibited by carmofur treatment in TMZ-resistant GBM cells, specifically. These data suggest a possible role for E2F8 as a mediator of carmofur effects in the context of TMZ resistance. These data suggest the potential utility of normalizing the sphingolipid balance in the context of recurrent GBM.

2.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681903

RESUMO

Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Medicina de Precisão , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
3.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829908

RESUMO

Median overall survival is very low in patients with glioblastoma (GBM), largely because these tumors become resistant to therapy. Recently, we found that a decrease in the cytosolic labile iron pool underlies the acquisition of radioresistance. Both cytosolic and mitochondrial iron are important for regulating ROS production, which largely facilitates tumor progression and response to therapy. Here, we investigated the role of the mitochondrial iron transporters mitoferrin-1 (MFRN1) and mitoferrin-2 (MFRN2) in GBM progression. Analysis of The Cancer Genome Atlas database revealed upregulation of MFRN1 mRNA and downregulation of MFRN2 mRNA in GBM tumor tissue compared with non-GBM tissue, yet only the tumor expression level of MFRN1 mRNA negatively correlated with overall survival in patients. Overexpression of MFRN1 in glioma cells significantly increased the level of mitochondrial iron, enhanced the proliferation rate and anchorage-independent growth of these cells, and significantly decreased mouse survival in an orthotopic model of glioma. Finally, MFRN1 overexpression stimulated the upregulation of glutathione, which protected glioma cells from 4-hydroxynonenal-induced protein damage. Overall, these results demonstrate a mechanistic link between MFRN1-mediated mitochondrial iron metabolism and GBM progression. Manipulation of MFRN1 may provide a new therapeutic strategy for improving clinical outcomes in patients with GBM.

4.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359860

RESUMO

Iron is essential for many cellular processes, but cellular iron homeostasis must be maintained to ensure the balance of cellular signaling processes and prevent disease. Iron transport in and out of the cell and cellular organelles is crucial in this regard. The transport of iron into the mitochondria is particularly important, as heme and the majority of iron-sulfur clusters are synthesized in this organelle. Iron is also required for the production of mitochondrial complexes that contain these iron-sulfur clusters and heme. As the principal iron importers in the mitochondria of human cells, the mitoferrins have emerged as critical regulators of cytosolic and mitochondrial iron homeostasis. Here, we review the discovery and structure of the mitoferrins, as well as the significance of these proteins in maintaining cytosolic and mitochondrial iron homeostasis for the prevention of cancer and many other diseases.


Assuntos
Heme , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Homeostase , Heme/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
5.
Metabolites ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005623

RESUMO

Although often effective at treating newly diagnosed glioblastoma (GBM), increasing evidence suggests that chemo- and radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness, as well as treatment resistance. Recent studies have demonstrated that alterations in glioma cell metabolism, induced by a switch in the isoform expression of cytochrome c oxidase subunit 4 (COX4), a key regulatory subunit of mammalian cytochrome c oxidase, could promote these effects. To understand how the two COX4 isoforms (COX4-1 and COX4-2) differentially affect glioma metabolism, glioma samples harvested from COX4-1- or COX4-2-overexpressing U251 cells were profiled using Gas chromatography-mass spectrometry GC-MS and Liquid Chromatography - Tandem Mass Spectrometry LC-MS/MS metabolomics platforms. The concentration of 362 metabolites differed significantly in the two cell types. The two most significantly upregulated pathways associated with COX4-1 overexpression were purine and glutathione metabolism; the two most significantly downregulated metabolic pathways associated with COX4-1 expression were glycolysis and fatty acid metabolism. Our study provides new insights into how Cytochrome c oxidase (CcO) regulatory subunits affect cellular metabolic networks in GBM and identifies potential targets that may be exploited for therapeutic benefit.

6.
Free Radic Biol Med ; 185: 25-35, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35476930

RESUMO

Radiotherapy is an important treatment modality for glioblastoma (GBM), yet the initial effectiveness of radiotherapy is eventually lost due to the development of adaptive radioresistance during fractionated radiation therapy. Defining the molecular mechanism(s) responsible for the adaptive radioresistance in GBM is necessary for the development of effective treatment options. The cellular labile iron pool (LIP) is very important for determining the cellular response to radiation, as it contributes to radiation-induced production of reactive oxygen species (ROS) such as lipid radicals through Fenton reactions. Recently, cytochrome c oxidase (CcO), a mitochondrial heme-containing enzyme also involved in regulating ROS production, was found to be involved in GBM chemoresistance. However, the role of LIP and CcO in GBM radioresistance is not known. Herein, we tested the hypothesis that CcO-mediated alterations in the level of labile iron contribute to adaptive radioresistance. Using an in vitro model of GBM adaptive radioresistance, we found an increase in CcO activity in radioresistant cells that associated with a decrease in the cellular LIP, decrease in lipid peroxidation, and a switch in the CcO subunit 4 (COX4) isoform expressed, from COX4-2 to COX4-1. Furthermore, knockdown of COX4-1 in radioresistant GBM cells decreased CcO activity and restored radiosensitivity, whereas overexpression of COX4-1 in radiosensitive cells increased CcO activity and rendered the cells radioresistant. Overexpression of COX4-1 in radiosensitive cells also significantly reduced the cellular LIP and lipid peroxidation. Pharmacological manipulation of the cellular labile iron level using iron chelators altered CcO activity and the radiation response. Overall, these results demonstrate a mechanistic link between CcO activity and LIP in GBM radioresistance and identify the CcO subunit isoform switch from COX4-2 to COX4-1 as a novel biochemical node for adaptive radioresistance of GBM. Manipulation of CcO and the LIP may restore the sensitivity to radiation in radioresistant GBM cells and thereby provide a strategy to improve therapeutic outcome in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Ferro , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio
7.
Cell Stress ; 6(4): 45-60, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35478774

RESUMO

Glioblastoma (GBM) is a fatal disease with recurrences often associated with radioresistance. Although often effective at treating newly diagnosed GBM, increasing evidence suggests that radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness. Using isogenic radiosensitive and radioresistant GBM cell lines and patient-derived xenolines, we found that acquired radioresistance is associated with a shift from a glycolytic metabolism to a more oxidative metabolism marked by a substantial increase in the activity of the mitochondrial respiratory chain complex cytochrome c oxidase (CcO). This elevated CcO activity was associated with a switch in the isoform expression of the CcO regulatory subunit COX4, from COX4-2 to COX4-1, assembly of CcO-containing mitochondrial supercomplexes (SCs), and reduced superoxide (O2 •-) production. Overexpression of COX4-1 in the radiosensitive cells was sufficient to promote the switch from glycolytic to oxidative metabolism and the incorporation of CcO into SCs, with a concomitant reduction in O2 •- production. Conversely, silencing of COX4-1 expression in normally radioresistant cells reduced CcO activity, promoted the disassembly of mitochondrial SCs, and increased O2 •- production. Additionally, gain or loss of COX4-1 expression was sufficient to induce the radioresistant or radiosensitive phenotype, respectively. Our results demonstrate that COX4-1 promotes SC assembly in GBM cells, and SC assembly may in turn regulate the production of reactive oxygen species and thus the acquisition of radioresistance in GBM.

8.
Bioconjug Chem ; 33(11): 1957-1972, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35041398

RESUMO

Glioblastoma multiforme (GBM) is the most malignant type of brain tumor and has an extremely poor prognosis. Current treatment protocols lack favorable outcomes, and alternative treatments with superior efficacy are needed. In this study, we demonstrate that loading paclitaxel (PTX) in a polymeric, nanoparticulate delivery system is capable of improving its brain accumulation and therapeutic activity. We independently incorporated two different positively charged surface modifiers, poly(amidoamine) (PAMAM) and poly(ethylenimine) (PEI), onto poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG), PLGA-PEG, nanoparticles (NPs) using a modified nanoprecipitation technique that assures the formation of nanosized particles while exposing the positively charged polymer on the surface. The prepared NPs underwent comprehensive analyses of their size, charge, in vitro permeability against a BBB cell line, and in vivo biodistribution. Our results demonstrated the successful fabrication of positively charged NPs using PAMAM or PEI. Importantly, significant improvement in brain accumulation (in vivo) was associated with NPs containing PAMAM compared to unmodified NPs or NPs containing PEI. Finally, the efficacy of PAMAM-modified NPs loaded with PTX was evaluated with orthotopic human GBM xenografts in a mouse model, and the data demonstrated improved survival and equivalent safety compared to soluble PTX. Our data substantiate the importance of surface chemistry on the magnitude of NP accumulation in the brain and pave the way for further in vivo evaluation of chemotherapeutic drugs against GBM that have previously been overlooked because of their limited ability to cross the BBB.


Assuntos
Glioblastoma , Nanopartículas , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Distribuição Tecidual , Ácido Láctico , Modelos Animais de Doenças , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Polietilenoglicóis/uso terapêutico , Encéfalo/patologia , Portadores de Fármacos/uso terapêutico
9.
Neurooncol Adv ; 4(1): vdab186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35088051

RESUMO

BACKGROUND: Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. METHODS: This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. RESULTS: OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. CONCLUSIONS: Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.

10.
Antioxidants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943091

RESUMO

Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.

11.
PLoS One ; 16(5): e0250649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945569

RESUMO

Treatment for the lethal primary adult brain tumor glioblastoma (GBM) includes the chemotherapy temozolomide (TMZ), but TMZ resistance is common and correlates with promoter methylation of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT). To improve treatment of GBMs, including those resistant to TMZ, we explored the potential of targeting dopamine receptor signaling. We found that dopamine receptor 3 (DRD3) is expressed in GBM and is also a previously unexplored target for therapy. We identified novel antagonists of DRD3 that decreased the growth of GBM xenograft-derived neurosphere cultures with minimal toxicity against human astrocytes and/or induced pluripotent stem cell-derived neurons. Among a set of DRD3 antagonists, we identified two compounds, SRI-21979 and SRI-30052, that were brain penetrant and displayed a favorable therapeutic window analysis of The Cancer Genome Atlas data demonstrated that higher levels of DRD3 (but not DRD2 or DRD4) were associated with worse prognosis in primary, MGMT unmethylated tumors. These data suggested that DRD3 antagonists may remain efficacious in TMZ-resistant GBMs. Indeed, SRI-21979, but not haloperidol, significantly reduced the growth of TMZ-resistant GBM cells. Together our data suggest that DRD3 antagonist-based therapies may provide a novel therapeutic option for the treatment of GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/patologia , Receptores de Dopamina D3/antagonistas & inibidores , Temozolomida/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
12.
Cancers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899427

RESUMO

Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.

13.
Cell Stress ; 3(2): 47-65, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31225500

RESUMO

Glioblastoma, also known as glioblastoma multi-forme, is the most common and deadliest form of high-grade malignant brain tumors with limited available treatments. Within the glioblastoma tumor microenvironment (TME), tumor cells, stromal cells, and infiltrating immune cells continuously interact and exchange signals through various secreted factors including cytokines, chemokines, growth factors, and metabolites. Simultaneously, they dynamically reprogram their metabolism according to environmental energy demands such as hypoxia and neo-vascularization. Such metabolic re-programming can determine fates and functions of tumor cells as well as immune cells. Ultimately, glioma cells in the TME transform immune cells to suppress anti-tumor immune cells such as T, natural killer (NK) cells, and dendritic cells (DC), and evade immune surveillance, and even to promote angiogenesis and tumor metastasis. Glioma-associated microglia/macrophages (GAMM) and myeloid-derived suppressor cells (MDSC) are most abundantly recruited and expanded myeloid lineage cells in glioblastoma TME and mainly lead to immunosuppression. In this review, of myeloid cells we will focus on MDSC as an important driver to induce immunosuppression in glioblastoma. Here, we review current literature on immunosuppressive functions and metabolic reprogramming of MDSCs in glioblastoma and discuss their metabolic pathways as potential therapeutic targets to improve current incurable glioblastoma treatment.

14.
Cell Commun Signal ; 16(1): 61, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231881

RESUMO

BACKGROUND: Glioblastomas (GBMs), the most common and most lethal of the primary brain tumors, are characterized by marked intra-tumor heterogeneity. Several studies have suggested that within these tumors a restricted population of chemoresistant glioma cells is responsible for recurrence. However, the gene expression patterns underlying chemoresistance are largely unknown. Numerous efforts have been made to block IGF-1R signaling pathway in GBM. However, those therapies have been repeatedly unsuccessful. This failure may not only be due to the complexity of IGF receptor signaling, but also due to complex cell-cell interactions in the tumor mass. We hypothesized that differential expression of proteins in the insulin-like growth factor (IGF) system underlie cell-specific differences in the resistance to temozolomide (TMZ) within GBM tumors. METHODS: Expression of IGF-1R was analyzed in cell lines, patient-derived xenograft cell lines and human biopsies by cell surface proteomics, flow cytometry, immunofluorescence and quantitative real time polymerase chain reaction (qRT-PCR). Using gain-of-function and loss-of-function strategies, we dissected the molecular mechanism responsible for IGF-binding protein 6 (IGFBP6) tumor suppressor functions both in in vitro and in vivo. Site direct mutagenesis was used to study IGFBP6-IGF2 interactions. RESULTS: We determined that in human glioma tissue, glioma cell lines, and patient-derived xenograft cell lines, treatment with TMZ enhances the expression of IGF1 receptor (IGF-1R) and IGF2 and decreases the expression of IGFBP6, which sequesters IGF2. Using chemoresistant and chemosensitive wild-type and transgenic glioma cells, we further found that a paracrine mechanism driven by IGFBP6 secreted from TMZ-sensitive cells abrogates the proliferation of IGF-1R-expressing TMZ-resistant cells in vitro and in vivo. In mice bearing intracranial human glioma xenografts, overexpression of IGFBP6 in TMZ-resistant cells increased survival. Finally, elevated expression of IGF-1R and IGF2 in gliomas associated with poor patient survival and tumor expression levels of IGFBP6 directly correlated with overall survival time in patients with GBM. CONCLUSIONS: Our findings support the view that proliferation of chemoresistant tumor cells is controlled within the tumor mass by IGFBP6-producing tumor cells; however, TMZ treatment eliminates this population and enriches the TMZ-resistant cell populationleading to accelerated growth of the entire tumor mass.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Comunicação Parácrina , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Temozolomida/farmacologia
15.
G3 (Bethesda) ; 8(11): 3627-3636, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30228192

RESUMO

Glioblastoma multiforme (GBM) has been recognized as the most lethal type of malignant brain tumor. Despite efforts of the medical and research community, patients' survival remains extremely low. Multi-omic profiles (including DNA sequence, methylation and gene expression) provide rich information about the tumor. These profiles are likely to reveal processes that may be predictive of patient survival. However, the integration of multi-omic profiles, which are high dimensional and heterogeneous in nature, poses great challenges. The goal of this work was to develop models for prediction of survival of GBM patients that can integrate clinical information and multi-omic profiles, using multi-layered Bayesian regressions. We apply the methodology to data from GBM patients from The Cancer Genome Atlas (TCGA, n = 501) to evaluate whether integrating multi-omic profiles (SNP-genotypes, methylation, copy number variants and gene expression) with clinical information (demographics as well as treatments) leads to an improved ability to predict patient survival. The proposed Bayesian models were used to estimate the proportion of variance explained by clinical covariates and omics and to evaluate prediction accuracy in cross validation (using the area under the Receiver Operating Characteristic curve, AUC). Among clinical and demographic covariates, age (AUC = 0.664) and the use of temozolomide (AUC = 0.606) were the most predictive of survival. Among omics, methylation (AUC = 0.623) and gene expression (AUC = 0.593) were more predictive than either SNP (AUC = 0.539) or CNV (AUC = 0.547). While there was a clear association between age and methylation, the integration of age, the use of temozolomide, and either gene expression or methylation led to a substantial increase in AUC in cross-validaton (AUC = 0.718). Finally, among the genes whose methylation was higher in aging brains, we observed a higher enrichment of these genes being also differentially methylated in cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Genômica , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Temozolomida/uso terapêutico
16.
Sci Rep ; 8(1): 12734, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143716

RESUMO

Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Oxidantes/toxicidade , Gases em Plasma/química , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , RNA Interferente Pequeno/metabolismo
17.
Biochim Biophys Acta Rev Cancer ; 1869(2): 175-188, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378228

RESUMO

De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.


Assuntos
Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Aminoácidos/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
18.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263302

RESUMO

Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/prevenção & controle , Glioblastoma/prevenção & controle , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , DNA de Neoplasias/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Temozolomida/administração & dosagem , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 8(23): 37568-37583, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28455961

RESUMO

Patients with glioblastoma have one of the lowest overall survival rates among patients with cancer. Standard of care for patients with glioblastoma includes temozolomide and radiation therapy, yet 30% of patients do not respond to these treatments and nearly all glioblastoma tumors become resistant. Chlorpromazine is a United States Food and Drug Administration-approved phenothiazine widely used as a psychotropic in clinical practice. Recently, experimental evidence revealed the anti-proliferative activity of chlorpromazine against colon and brain tumors. Here, we used chemoresistant patient-derived glioma stem cells and chemoresistant human glioma cell lines to investigate the effects of chlorpromazine against chemoresistant glioma. Chlorpromazine selectively and significantly inhibited proliferation in chemoresistant glioma cells and glioma stem cells. Mechanistically, chlorpromazine inhibited cytochrome c oxidase (CcO, complex IV) activity from chemoresistant but not chemosensitive cells, without affecting other mitochondrial complexes. Notably, our previous studies revealed that the switch to chemoresistance in glioma cells is accompanied by a switch from the expression of CcO subunit 4 isoform 2 (COX4-2) to COX4-1. In this study, chlorpromazine induced cell cycle arrest selectively in glioma cells expressing COX4-1, and computer-simulated docking studies indicated that chlorpromazine binds more tightly to CcO expressing COX4-1 than to CcO expressing COX4-2. In orthotopic mouse brain tumor models, chlorpromazine treatment significantly increased the median overall survival of mice harboring chemoresistant tumors. These data indicate that chlorpromazine selectively inhibits the growth and proliferation of chemoresistant glioma cells expressing COX4-1. The feasibility of repositioning chlorpromazine for selectively treating chemoresistant glioma tumors should be further explored.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Clorpromazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glioma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/farmacologia , Antipsicóticos/farmacologia , Neoplasias Encefálicas/metabolismo , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Antagonistas de Dopamina/farmacologia , Reposicionamento de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioma/metabolismo , Humanos , Camundongos Nus , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 291(46): 24188-24199, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679486

RESUMO

The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glioma , Proteínas de Neoplasias/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...