Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 13886, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000670

RESUMO

Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the desirable but contrasting requirements of spin robustness against relaxation mechanisms and sizeable coupling between spin and orbital motion of the carriers. Here, we focus on Ge, which is a prominent candidate for shuttling spin quantum bits into the mainstream Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome these fundamental limitations by investigating a two-dimensional electron gas in quantum wells of pure Ge grown on Si. These epitaxial systems demonstrate exceptionally long spin lifetimes. In particular, by fine-tuning quantum confinement we demonstrate that the electron Landé g factor can be engineered in our CMOS-compatible architecture over a range previously inaccessible for Si spintronics.

2.
J Appl Crystallogr ; 48(Pt 1): 262-268, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26089750

RESUMO

This article reports the X-ray diffraction-based structural characterization of the α12 multilayer structure SiGe2Si2Ge2SiGe12 [d'Avezac, Luo, Chanier & Zunger (2012 ▶). Phys. Rev. Lett.108, 027401], which is predicted to form a direct bandgap material. In particular, structural parameters of the superlattice such as thickness and composition as well as interface properties, are obtained. Moreover, it is found that Ge subsequently segregates into layers. These findings are used as input parameters for band structure calculations. It is shown that the direct bandgap properties depend very sensitively on deviations from the nominal structure, and only almost perfect structures can actually yield a direct bandgap. Photoluminescence emission possibly stemming from the superlattice structure is observed.

3.
Nanoscale Res Lett ; 7(1): 633, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171543

RESUMO

In this work, we present an experimental procedure to measure the composition distribution within inhomogeneous SiGe nanostructures. The method is based on the Raman spectra of the nanostructures, quantitatively analyzed through the knowledge of the scattering efficiency of SiGe as a function of composition and excitation wavelength. The accuracy of the method and its limitations are evidenced through the analysis of a multilayer and of self-assembled islands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...