Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675961

RESUMO

AIMS: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. METHODS: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. RESULTS: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. CONCLUSIONS: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , Reações Cruzadas , Vacina Antivariólica , Vaccinia virus , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacina Antivariólica/imunologia , Linfócitos B/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Reações Cruzadas/imunologia , Vaccinia virus/imunologia , Pessoa de Meia-Idade , Memória Imunológica , Testes de Neutralização , Varíola/imunologia , Varíola/prevenção & controle , Animais , Masculino , Linfócitos T/imunologia , Feminino , Ensaio de Imunoadsorção Enzimática , Orthopoxvirus/imunologia , Vacinação , Chlorocebus aethiops , Adulto , Ativação Linfocitária , Células Vero
2.
Vaccine ; 42(10): 2687-2694, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38499458

RESUMO

Cancer patients (CPs), being immunosuppressed due to the treatment received or to the disease itself, are more susceptible to infections and their potential complications, showing therefore an increased risk of developing severe COVID-19 compared to the general population. We evaluated the immune responses to anti-SARS-CoV-2 vaccination in patients with solid tumors one year after the administration of the third dose and the effect of cancer treatment on vaccine immunogenicity was assessed. Healthy donors (HDs) were enrolled. Binding and neutralizing antibody (Ab) titers were evaluated using chemiluminescence immunoassay (CLIA) and Plaque Reduction Neutralization Test (PRNT) respectively. T-cell response was analyzed using multiparametric flow cytometry. CPs who were administered three vaccine doses showed lower Ab titers than CPs with four doses and HDs. Overall, a lower cell-mediated response was found in CPs, with a predominance of monofunctional T-cells producing TNFα. Lower Ab titers and a weaker T-cell response were observed in CPs without prior SARS-CoV-2 infection when compared to those with a previous infection. While no differences in the humoral response were found comparing immunotherapy and non-immunotherapy patients, a stronger T-cell response in CPs treated with immunotherapy was observed. Our results emphasize the need of booster doses in cancer patients to achieve a level of protection similar to that observed in healthy donors and underlines the importance of considering the treatment received to reach a proper immune response.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Neoplasias/terapia , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Viruses ; 15(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896888

RESUMO

SARS-CoV-2 is inactivated in aerosol (its primary mode of transmission) by means of radiated microwaves at frequencies that have been experimentally determined. Such frequencies are best predicted by the mathematical model suggested by Taylor, Margueritat and Saviot. The alignment between such mathematical prediction and the outcomes of our experiments serves to reinforce the efficacy of the radiated microwave technology and its promise in mitigating the transmission of SARS-CoV-2 in its naturally airborne state.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Micro-Ondas , Aerossóis e Gotículas Respiratórios , Modelos Teóricos
4.
Viruses ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515131

RESUMO

Coronaviruses are a family of viruses that cause disease in mammals and birds. In humans, coronaviruses cause infections on the respiratory tract that can be fatal. These viruses can cause both mild illnesses such as the common cold and lethal illnesses such as SARS, MERS, and COVID-19. Air transmission represents the principal mode by which people become infected by SARS-CoV-2. To reduce the risks of air transmission of this powerful pathogen, we devised a method of inactivation based on the propagation of electromagnetic waves in the area to be sanitized. We optimized the conditions in a controlled laboratory environment mimicking a natural airborne virus transmission and consistently achieved a 90% (tenfold) reduction of infectivity after a short treatment using a Radio Frequency (RF) wave emission with a power level that is safe for people according to most regulatory agencies, including those in Europe, USA, and Japan. To the best of our knowledge, this is the first time that SARS-CoV-2 has been shown to be inactivated through RF wave emission under conditions compatible with the presence of human beings and animals. Additional in-depth studies are warranted to extend the results to other viruses and to explore the potential implementation of this technology in different environmental conditions.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Micro-Ondas , Aerossóis e Gotículas Respiratórios , Europa (Continente) , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...