Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 366(12): 1090-8, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22417201

RESUMO

BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.).


Assuntos
Células da Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Adolescente , Adulto , Células Clonais , Genoma Humano , Humanos , Leucemia Mieloide Aguda/etiologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/complicações , Análise de Sequência com Séries de Oligonucleotídeos , Pele , Adulto Jovem
2.
Nat Genet ; 44(1): 53-7, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22158538

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.


Assuntos
Mutação de Sentido Incorreto , Síndromes Mielodisplásicas/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Splicing de RNA , Fator de Processamento U2AF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...