Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 170: 168-177, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583126

RESUMO

Atmospheric carbon dioxide (CO2) levels are increasing at the fastest rate ever recorded, causing higher CO2 dissolution in the ocean, leading to a process known as ocean acidification (OA). Unless anthropogenic CO2 emissions are reduced, they are expected to reach ~900 ppm by the century's end, resulting in a 0.13-0.42 drop in the seawater pH levels. Since the transgenerational effects of high CO2 in marine organisms are still poorly understood at lower levels of biological organization (namely at the biochemical level), here we reared a key ecological relevant marine amphipod, Gammarus locusta, under control and high CO2 conditions for two generations. We measured several stress-related biochemical endpoints: i) oxidative damage [lipid peroxidation (LPO) and DNA damage]; ii) protein repair and removal mechanisms [heat shock proteins (HSPs) and ubiquitin (Ub)]; as well as iii) antioxidant responses [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST)] and total antioxidant capacity (TAC). The present results support the premise that exposure to high CO2 is expected to decrease survival rates in this species and cause within- and transgenerational oxidative damage. More specifically, the predicted upsurge of reactive oxygen and nitrogen species seemed to overwhelm the stimulated amphipod antioxidant machinery, which proved insufficient in circumventing protein damage within the parents. Additionally, negative effects of OA are potentially being inherited by the offspring, since the oxidative stress imposed in the parent's proteome appears to be restricting DNA repair mechanisms efficiency within the offspring's. Thus, we argue that a transgenerational exposure of G. locusta could further increase vulnerability to OA and may endanger the fitness and sustainability of natural populations.


Assuntos
Anfípodes/fisiologia , Monitoramento Ambiental , Água do Mar/química , Animais , Dióxido de Carbono , Catalase , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo
2.
Sci Rep ; 7(1): 3918, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634416

RESUMO

The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...