Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 7: 106, 2006 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-16672057

RESUMO

BACKGROUND: Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. AIMS: In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. RESULTS: The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. CONCLUSION: We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.


Assuntos
Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Genômica/métodos , Tubarões/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional/métodos , Genoma , Modelos Genéticos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
2.
Mol Cell Biol ; 24(11): 5060-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143196

RESUMO

Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP(+/-) colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.


Assuntos
Recombinação Genética/efeitos da radiação , Instabilidade Cromossômica/efeitos da radiação , Humanos , Hibridização in Situ Fluorescente , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...