Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5286, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902228

RESUMO

Cells are the fundamental units of life, and like all life forms, they change over time. Changes in cell state are driven by molecular processes; of these many are initiated when molecule numbers reach and exceed specific thresholds, a characteristic that can be described as "digital cellular logic". Here we show how molecular and cellular noise profoundly influence the time to cross a critical threshold-the first-passage time-and map out scenarios in which stochastic dynamics result in shorter or longer average first-passage times compared to noise-less dynamics. We illustrate the dependence of the mean first-passage time on noise for a set of exemplar models of gene expression, auto-regulatory feedback control, and enzyme-mediated catalysis. Our theory provides intuitive insight into the origin of these effects and underscores two important insights: (i) deterministic predictions for cellular event timing can be highly inaccurate when molecule numbers are within the range known for many cells; (ii) molecular noise can significantly shift mean first-passage times, particularly within auto-regulatory genetic feedback circuits.


Assuntos
Processos Estocásticos , Regulação da Expressão Gênica , Retroalimentação Fisiológica , Modelos Biológicos , Redes Reguladoras de Genes , Fatores de Tempo
2.
Math Biosci ; 373: 109204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710441

RESUMO

We introduce a biologically detailed, stochastic model of gene expression describing the multiple rate-limiting steps of transcription, nuclear pre-mRNA processing, nuclear mRNA export, cytoplasmic mRNA degradation and translation of mRNA into protein. The processes in sub-cellular compartments are described by an arbitrary number of processing stages, thus accounting for a significantly finer molecular description of gene expression than conventional models such as the telegraph, two-stage and three-stage models of gene expression. We use two distinct tools, queueing theory and model reduction using the slow-scale linear-noise approximation, to derive exact or approximate analytic expressions for the moments or distributions of nuclear mRNA, cytoplasmic mRNA and protein fluctuations, as well as lower bounds for their Fano factors in steady-state conditions. We use these to study the phase diagram of the stochastic model; in particular we derive parametric conditions determining three types of transitions in the properties of mRNA fluctuations: from sub-Poissonian to super-Poissonian noise, from high noise in the nucleus to high noise in the cytoplasm, and from a monotonic increase to a monotonic decrease of the Fano factor with the number of processing stages. In contrast, protein fluctuations are always super-Poissonian and show weak dependence on the number of mRNA processing stages. Our results delineate the region of parameter space where conventional models give qualitatively incorrect results and provide insight into how the number of processing stages, e.g. the number of rate-limiting steps in initiation, splicing and mRNA degradation, shape stochastic gene expression by modulation of molecular memory.


Assuntos
Modelos Genéticos , RNA Mensageiro , Processos Estocásticos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica , Núcleo Celular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Expressão Gênica , Biossíntese de Proteínas/genética , Transcrição Gênica
3.
Biophys J ; 123(9): 1034-1057, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38594901

RESUMO

Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.


Assuntos
Modelos Genéticos , Processos Estocásticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364008

RESUMO

In this study, we obtain an exact time-dependent solution of the chemical master equation (CME) of an extension of the two-state telegraph model describing bursty or non-bursty protein expression in the presence of positive or negative autoregulation. Using the method of spectral decomposition, we show that the eigenfunctions of the generating function solution of the CME are Heun functions, while the eigenvalues can be determined by solving a continued fraction equation. Our solution generalizes and corrects a previous time-dependent solution for the CME of a gene circuit describing non-bursty protein expression in the presence of negative autoregulation [Ramos et al., Phys. Rev. E 83, 062902 (2011)]. In particular, we clarify that the eigenvalues are generally not real as previously claimed. We also investigate the relationship between different types of dynamic behavior and the type of feedback, the protein burst size, and the gene switching rate.


Assuntos
Redes Reguladoras de Genes , Proteínas , Processos Estocásticos , Proteínas/genética , Proteínas/metabolismo , Expressão Gênica
5.
Biophys J ; 123(1): 4-30, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37885177

RESUMO

The snapshot distribution of mRNA counts per cell can be measured using single-molecule fluorescence in situ hybridization or single-cell RNA sequencing. These distributions are often fit to the steady-state distribution of the two-state telegraph model to estimate the three transcriptional parameters for a gene of interest: mRNA synthesis rate, the switching on rate (the on state being the active transcriptional state), and the switching off rate. This model assumes no extrinsic noise, i.e., parameters do not vary between cells, and thus estimated parameters are to be understood as approximating the average values in a population. The accuracy of this approximation is currently unclear. Here, we develop a theory that explains the size and sign of estimation bias when inferring parameters from single-cell data using the standard telegraph model. We find specific bias signatures depending on the source of extrinsic noise (which parameter is most variable across cells) and the mode of transcriptional activity. If gene expression is not bursty then the population averages of all three parameters are overestimated if extrinsic noise is in the synthesis rate; underestimation occurs if extrinsic noise is in the switching on rate; both underestimation and overestimation can occur if extrinsic noise is in the switching off rate. We find that some estimated parameters tend to infinity as the size of extrinsic noise approaches a critical threshold. In contrast when gene expression is bursty, we find that in all cases the mean burst size (ratio of the synthesis rate to the switching off rate) is overestimated while the mean burst frequency (the switching on rate) is underestimated. We estimate the size of extrinsic noise from the covariance matrix of sequencing data and use this together with our theory to correct published estimates of transcriptional parameters for mammalian genes.


Assuntos
Mamíferos , Transcrição Gênica , Animais , Hibridização in Situ Fluorescente , RNA Mensageiro/genética , Processos Estocásticos
6.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38063222

RESUMO

The classical three-stage model of stochastic gene expression predicts the statistics of single cell mRNA and protein number fluctuations as a function of the rates of promoter switching, transcription, translation, degradation and dilution. While this model is easily simulated, its analytical solution remains an unsolved problem. Here we modify this model to explicitly include cell-cycle dynamics and then derive an exact solution for the time-dependent joint distribution of mRNA and protein numbers. We show large differences between this model and the classical model which captures cell-cycle effects implicitly via effective first-order dilution reactions. In particular we find that the Fano factor of protein numbers calculated from a population snapshot measurement are underestimated by the classical model whereas the correlation between mRNA and protein can be either over- or underestimated, depending on the timescales of mRNA degradation and promoter switching relative to the mean cell-cycle duration time.


Assuntos
Modelos Genéticos , Proteínas , Proteínas/metabolismo , RNA Mensageiro/genética , Regiões Promotoras Genéticas/genética , Expressão Gênica , Processos Estocásticos
7.
Phys Rev E ; 108(3-1): 034405, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849194

RESUMO

The telegraph model is the standard model of stochastic gene expression, which can be solved exactly to obtain the distribution of mature RNA numbers per cell. A modification of this model also leads to an analytical distribution of nascent RNA numbers. These solutions are routinely used for the analysis of single-cell data, including the inference of transcriptional parameters. However, these models neglect important mechanistic features of transcription elongation, such as the stochastic movement of RNA polymerases and their steric (excluded-volume) interactions. Here we construct a model of gene expression describing promoter switching between inactive and active states, binding of RNA polymerases in the active state, their stochastic movement including steric interactions along the gene, and their unbinding leading to a mature transcript that subsequently decays. We derive the steady-state distributions of the nascent and mature RNA numbers in two important limiting cases: constitutive expression and slow promoter switching. We show that RNA fluctuations are suppressed by steric interactions between RNA polymerases, and that this suppression can in some instances even lead to sub-Poissonian fluctuations; these effects are most pronounced for nascent RNA and less prominent for mature RNA, since the latter is not a direct sensor of transcription. We find a relationship between the parameters of our microscopic mechanistic model and those of the standard models that ensures excellent consistency in their prediction of the first and second RNA number moments over vast regions of parameter space, encompassing slow, intermediate, and rapid promoter switching, provided the RNA number distributions are Poissonian or super-Poissonian. Furthermore, we identify the limitations of inference from mature RNA data, specifically showing that it cannot differentiate between highly distinct RNA polymerase traffic patterns on a gene.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica , Processos Estocásticos , Modelos Genéticos , Transcrição Gênica
8.
PLoS Genet ; 19(10): e1010958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782664

RESUMO

High-throughput sequencing technology is central to our current understanding of the human methylome. The vast majority of studies use chemical conversion to analyse bulk-level patterns of DNA methylation across the genome from a population of cells. While this technology has been used to probe single-molecule methylation patterns, such analyses are limited to short reads of a few hundred basepairs. DNA methylation can also be directly detected using Nanopore sequencing which can generate reads measuring megabases in length. However, thus far these analyses have largely focused on bulk-level assessment of DNA methylation. Here, we analyse DNA methylation in single Nanopore reads from human lymphoblastoid cells, to show that bulk-level metrics underestimate large-scale heterogeneity in the methylome. We use the correlation in methylation state between neighbouring sites to quantify single-molecule heterogeneity and find that heterogeneity varies significantly across the human genome, with some regions having heterogeneous methylation patterns at the single-molecule level and others possessing more homogeneous methylation patterns. By comparing the genomic distribution of the correlation to epigenomic annotations, we find that the greatest heterogeneity in single-molecule patterns is observed within heterochromatic partially methylated domains (PMDs). In contrast, reads originating from euchromatic regions and gene bodies have more ordered DNA methylation patterns. By analysing the patterns of single molecules in more detail, we show the existence of a nucleosome-scale periodicity in DNA methylation that accounts for some of the heterogeneity we uncover in long single-molecule DNA methylation patterns. We find that this periodic structure is partially masked in bulk data and correlates with DNA accessibility as measured by nanoNOMe-seq, suggesting that it could be generated by nucleosomes. Our findings demonstrate the power of single-molecule analysis of long-read data to understand the structure of the human methylome.


Assuntos
Metilação de DNA , Nucleossomos , Humanos , Nucleossomos/genética , Metilação de DNA/genética , Heterocromatina/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
9.
Sci Adv ; 9(32): eadh5138, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556551

RESUMO

Gene expression inherently gives rise to stochastic variation ("noise") in the production of gene products. Minimizing noise is crucial for ensuring reliable cellular functions. However, noise cannot be suppressed below a certain intrinsic limit. For constitutively expressed genes, this limit is typically assumed to be Poissonian noise, wherein the variance in mRNA numbers is equal to their mean. Here, we demonstrate that several cell division genes in fission yeast exhibit mRNA variances significantly below this limit. The reduced variance can be explained by a gene expression model incorporating multiple transcription and mRNA degradation steps. Notably, in this sub-Poissonian regime, distinct from Poissonian or super-Poissonian regimes, cytoplasmic noise is effectively suppressed through a higher mRNA export rate. Our findings redefine the lower limit of eukaryotic gene expression noise and uncover molecular requirements for achieving ultralow noise, which is expected to be important for vital cellular functions.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Divisão Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citoplasma/metabolismo
10.
bioRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945401

RESUMO

Stochastic variation in gene products ("noise") is an inescapable by-product of gene expression. Noise must be minimized to allow for the reliable execution of cellular functions. However, noise cannot be suppressed beyond an intrinsic lower limit. For constitutively expressed genes, this limit is believed to be Poissonian, meaning that the variance in mRNA numbers cannot be lower than their mean. Here, we show that several cell division genes in fission yeast have mRNA variances significantly below this limit, which cannot be explained by the classical gene expression model for low-noise genes. Our analysis reveals that multiple steps in both transcription and mRNA degradation are essential to explain this sub-Poissonian variance. The sub-Poissonian regime differs qualitatively from previously characterized noise regimes, a hallmark being that cytoplasmic noise is reduced when the mRNA export rate increases. Our study re-defines the lower limit of eukaryotic gene expression noise and identifies molecular requirements for ultra-low noise which are expected to support essential cell functions.

11.
J Chem Phys ; 158(11): 114113, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948813

RESUMO

The complexity of mathematical models in biology has rendered model reduction an essential tool in the quantitative biologist's toolkit. For stochastic reaction networks described using the Chemical Master Equation, commonly used methods include time-scale separation, Linear Mapping Approximation, and state-space lumping. Despite the success of these techniques, they appear to be rather disparate, and at present, no general-purpose approach to model reduction for stochastic reaction networks is known. In this paper, we show that most common model reduction approaches for the Chemical Master Equation can be seen as minimizing a well-known information-theoretic quantity between the full model and its reduction, the Kullback-Leibler divergence defined on the space of trajectories. This allows us to recast the task of model reduction as a variational problem that can be tackled using standard numerical optimization approaches. In addition, we derive general expressions for propensities of a reduced system that generalize those found using classical methods. We show that the Kullback-Leibler divergence is a useful metric to assess model discrepancy and to compare different model reduction techniques using three examples from the literature: an autoregulatory feedback loop, the Michaelis-Menten enzyme system, and a genetic oscillator.

12.
iScience ; 26(1): 105746, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36619980

RESUMO

The standard model describing the fluctuations of mRNA numbers in single cells is the telegraph model which includes synthesis and degradation of mRNA, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by the cell cycle phase, cellular growth and division, and other crucial aspects of cellular biology. Here, we derive the analytical time-dependent solution of an extended telegraph model that explicitly considers the doubling of gene copy numbers upon DNA replication, dependence of the mRNA synthesis rate on cellular volume, gene dosage compensation, partitioning of molecules during cell division, cell-cycle duration variability, and cell-size control strategies. Based on the time-dependent solution, we obtain the analytical distributions of transcript numbers for lineage and population measurements in steady-state growth and also find a linear relation between the Fano factor of mRNA fluctuations and cell volume fluctuations. We show that generally the lineage and population distributions in steady-state growth cannot be accurately approximated by the steady-state solution of extrinsic noise models, i.e. a telegraph model with parameters drawn from probability distributions. This is because the mRNA lifetime is often not small enough compared to the cell cycle duration to erase the memory of division and replication. Accurate approximations are possible when this memory is weak, e.g. for genes with bursty expression and for which there is sufficient gene dosage compensation when replication occurs.

13.
Elife ; 112022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250630

RESUMO

Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers measured using smFISH (single molecule fluorescence in situ hybridization) with the distribution predicted by the telegraph model of gene expression, which defines two promoter states of activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected by processes downstream of transcription. In addition, the telegraph model assumes one gene copy but in experiments, cells may have two gene copies as cells replicate their genome during the cell cycle. While it is often presumed that post-transcriptional noise and gene copy number variation affect transcriptional parameter estimation, the size of the error introduced remains unclear. To address this issue, here we measure both mature and nascent mRNA distributions of GAL10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We infer transcriptional parameters from mature and nascent mRNA distributions, with and without accounting for cell cycle phase and compare the results to live-cell transcription measurements of the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switching rates and the initiation rate, and increases the fraction of time spent in the active state, as well as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcription site localisation when introns cannot be labelled. Simulations with parameters estimated from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads to autocorrelation functions that agree with those obtained from live-cell imaging.


Assuntos
Variações do Número de Cópias de DNA , Transcrição Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização in Situ Fluorescente , Dosagem de Genes , Ciclo Celular/genética , Processos Estocásticos
14.
PLoS Comput Biol ; 18(10): e1010574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36194626

RESUMO

Intracellular reaction rates depend on concentrations and hence their levels are often regulated. However classical models of stochastic gene expression lack a cell size description and cannot be used to predict noise in concentrations. Here, we construct a model of gene product dynamics that includes a description of cell growth, cell division, size-dependent gene expression, gene dosage compensation, and size control mechanisms that can vary with the cell cycle phase. We obtain expressions for the approximate distributions and power spectra of concentration fluctuations which lead to insight into the emergence of concentration homeostasis. We find that (i) the conditions necessary to suppress cell division-induced concentration oscillations are difficult to achieve; (ii) mRNA concentration and number distributions can have different number of modes; (iii) two-layer size control strategies such as sizer-timer or adder-timer are ideal because they maintain constant mean concentrations whilst minimising concentration noise; (iv) accurate concentration homeostasis requires a fine tuning of dosage compensation, replication timing, and size-dependent gene expression; (v) deviations from perfect concentration homeostasis show up as deviations of the concentration distribution from a gamma distribution. Some of these predictions are confirmed using data for E. coli, fission yeast, and budding yeast.


Assuntos
Escherichia coli , Schizosaccharomyces , Divisão Celular/genética , Homeostase , Modelos Biológicos , RNA Mensageiro/genética , Schizosaccharomyces/genética
15.
iScience ; 25(9): 105010, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36117994

RESUMO

The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the large number of simulations typically required can render the estimation of molecule number distributions and other quantities infeasible. In this article, we aim to leverage the representational power of neural networks to approximate the solutions of the CME and propose a framework for the Neural Estimation of Stochastic Simulations for Inference and Exploration (Nessie). Our approach is based on training neural networks to learn the distributions predicted by the CME from relatively few stochastic simulations. We show on biologically relevant examples that simple neural networks with one hidden layer can capture highly complex distributions across parameter space, thereby accelerating computationally intensive tasks such as parameter exploration and inference.

16.
Bioinformatics ; 38(17): 4243-4245, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35799359

RESUMO

SUMMARY: DelaySSAToolkit.jl is a Julia package for modelling reaction systems with non-Markovian dynamics, specifically those with time delays. These delays implicitly capture multiple intermediate reaction steps and hence serve as an effective model reduction technique for complex systems in biology, chemistry, ecology and genetics. The package implements a variety of exact formulations of the delay stochastic simulation algorithm. AVAILABILITY AND IMPLEMENTATION: The source code and documentation of DelaySSAToolkit.jl are available at https://github.com/palmtree2013/DelaySSAToolkit.jl.


Assuntos
Algoritmos , Software , Simulação por Computador
17.
J R Soc Interface ; 19(192): 20220153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858045

RESUMO

Estimating uncertainty in model predictions is a central task in quantitative biology. Biological models at the single-cell level are intrinsically stochastic and nonlinear, creating formidable challenges for their statistical estimation which inevitably has to rely on approximations that trade accuracy for tractability. Despite intensive interest, a sweet spot in this trade-off has not been found yet. We propose a flexible procedure for uncertainty quantification in a wide class of reaction networks describing stochastic gene expression including those with feedback. The method is based on creating a tractable coarse-graining of the model that is learned from simulations, a synthetic model, to approximate the likelihood function. We demonstrate that synthetic models can substantially outperform state-of-the-art approaches on a number of non-trivial systems and datasets, yielding an accurate and computationally viable solution to uncertainty quantification in stochastic models of gene expression.


Assuntos
Algoritmos , Modelos Biológicos , Expressão Gênica , Processos Estocásticos , Incerteza
18.
Math Biosci ; 347: 108828, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461835

RESUMO

Temporal variation of environmental stimuli leads to changes in gene expression. Since the latter is noisy and since many reaction events occur between the birth and death of an mRNA molecule, it is of interest to understand how a stimulus affects the transcript numbers measured at various sub-cellular locations. Here, we construct a stochastic model describing the dynamics of signal-dependent gene expression and its propagation downstream of transcription. For any time-dependent stimulus and assuming bursty gene expression, we devise a procedure which allows us to obtain time-dependent distributions of mRNA numbers at various stages of its life-cycle, e.g. in its nascent form at the transcription site, post-splicing in the nucleus, and after it is exported to the cytoplasm. We also derive an expression for the error in the approximation whose accuracy is verified via stochastic simulation. We find that, depending on the frequency of oscillation and the time of measurement, a stimulus can lead to cytoplasmic amplification or attenuation of transcriptional noise.


Assuntos
Modelos Genéticos , Simulação por Computador , Citoplasma , RNA Mensageiro/genética , Processos Estocásticos
19.
Phys Rev E ; 105(1-1): 014410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193216

RESUMO

We consider a stochastic model where a gene switches between two states, an mRNA transcript is released in the active state, and subsequently it undergoes an arbitrary number of sequential unimolecular steps before being degraded. The reactions effectively describe various stages of the mRNA life cycle such as initiation, elongation, termination, splicing, export, and degradation. We construct a mean-field approach that leads to closed-form steady-state distributions for the number of transcript molecules at each stage of the mRNA life cycle. By comparison with stochastic simulations, we show that the approximation is highly accurate over all the parameter space, independent of the type of expression (constitutive or bursty) and of the shape of the distribution (unimodal, bimodal, and nearly bimodal). The theory predicts that in a population of identical cells, any bimodality is gradually washed away as the mRNA progresses through its life cycle.

20.
PLoS Comput Biol ; 18(1): e1009793, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041656

RESUMO

Unlike many single-celled organisms, the growth of fission yeast cells within a cell cycle is not exponential. It is rather characterized by three distinct phases (elongation, septation, and reshaping), each with a different growth rate. Experiments also showed that the distribution of cell size in a lineage can be bimodal, unlike the unimodal distributions measured for the bacterium Escherichia coli. Here we construct a detailed stochastic model of cell size dynamics in fission yeast. The theory leads to analytic expressions for the cell size and the birth size distributions, and explains the origin of bimodality seen in experiments. In particular, our theory shows that the left peak in the bimodal distribution is associated with cells in the elongation phase, while the right peak is due to cells in the septation and reshaping phases. We show that the size control strategy, the variability in the added size during a cell cycle, and the fraction of time spent in each of the three cell growth phases have a strong bearing on the shape of the cell size distribution. Furthermore, we infer all the parameters of our model by matching the theoretical cell size and birth size distributions to those from experimental single-cell time-course data for seven different growth conditions. Our method provides a much more accurate means of determining the size control strategy (timer, adder or sizer) than the standard method based on the slope of the best linear fit between the birth and division sizes. We also show that the variability in added size and the strength of size control in fission yeast depend weakly on the temperature but strongly on the culture medium. More importantly, we find that stronger size homeostasis and larger added size variability are required for fission yeast to adapt to unfavorable environmental conditions.


Assuntos
Ciclo Celular/fisiologia , Tamanho Celular , Modelos Biológicos , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...