Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 28(2): 293-301, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23748345

RESUMO

Phosphorylation by Akt on Ser 280 was reported to induce cytoplasmic retention and inactivation of CHK1 with consequent genetic instability in PTEN-/- cells. In acute myeloid leukemia cells carrying the FLT3-internal tandem duplication (ITD) mutation, we observed high rates of FLT3-ITD-dependent CHK1 Ser 280 phosphorylation. Pharmacological inhibition and RNA interference identified Pim1/2, not Akt, as effectors of this phosphorylation. Pim1 catalyzed Ser 280 phosphorylation in vitro and ectopic expression of Pim1/2-induced CHK1 phosphorylation. Ser 280 phosphorylation did not modify CHK1 localization, but facilitated its cell cycle and resistance functions in leukemic cells. FLT3, PIM or CHK1 inhibitors synergized with DNA-damaging agents to induce apoptosis, allowing cells to bypass the etoposide-induced G2/M arrest. Consistently, etoposide-induced CHK1-dependent phosphorylations of CDC25C on Ser 216 and histone H3 on Thr11 were decreased upon FLT3 inhibition. Accordingly, ectopic expression of CHK1 improved the resistance of FLT3-ITD cells and maintained histone H3 phosphorylation in response to DNA damage, whereas expression of unphosphorylated Ser 280Ala mutant did not. Finally, FLT3- and Pim-dependent phosphorylation of CHK1 on Ser 280 was confirmed in primary blasts from patients. These results identify a new pathway involved in the resistance of FLT3-ITD leukemic cells to genotoxic agents, and they constitute the first report of CHK1 Ser 280 regulation in myeloid malignancies.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Duplicação Gênica , Humanos , Espaço Intracelular/metabolismo , Leucemia Mieloide Aguda/genética , Fosforilação , Transporte Proteico , Serina/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...