Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 178: 106415, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38852508

RESUMO

We propose a neuromimetic architecture capable of always-on pattern recognition, i.e. at any time during processing. To achieve this, we have extended an existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we transform the offline pattern categorization method into an online and event-driven layer. This classifier uses the spiking output of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also bring this event-driven pattern recognition algorithm fully online. The results have been validated on different datasets: Poker-DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard, Jayawant et al., 2015) and DVS Gesture (Amir et al., 2017). This demonstrates the efficiency of this bio-realistic SNN for ultra-fast object recognition through an event-by-event categorization process.

2.
Biol Cybern ; 117(4-5): 389-406, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37733033

RESUMO

Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .


Assuntos
Computadores , Visão Ocular
3.
Biol Cybern ; 117(4-5): 373-387, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695359

RESUMO

The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.


Assuntos
Aprendizagem , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Neurônios/fisiologia
4.
Brain Sci ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672049

RESUMO

Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption-a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.

5.
J Vis ; 19(2): 13, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802279

RESUMO

The statistics of real world images have been extensively investigated, but in virtually all cases using only low dynamic range image databases. The few studies that have considered high dynamic range (HDR) images have performed statistical analyses categorizing images as HDR according to their creation technique, and not to the actual dynamic range of the underlying scene. In this study we demonstrate, using a recent HDR dataset of natural images, that the statistics of the image as received at the camera sensor change dramatically with dynamic range, with particularly strong correlations with dynamic range being observed for the median, standard deviation, skewness, and kurtosis, while the one over frequency relationship for the power spectrum breaks down for images with a very high dynamic range, in practice making HDR images not scale invariant. Effects are also noted in the derivative statistics, the single pixel histograms, and the Haar wavelet analysis. However, we also show that after some basic early transforms occurring within the eye (light scatter, nonlinear photoreceptor response, center-surround modulation) the statistics of the resulting images become virtually independent from the dynamic range, which would allow them to be processed more efficiently by the human visual system.


Assuntos
Modelos Estatísticos , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Sensibilidades de Contraste/fisiologia , Humanos , Processamento de Sinais Assistido por Computador
6.
J Phys Chem B ; 112(14): 4157-60, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18341330

RESUMO

The ability to control finely the structure of materials remains a central issue in colloidal science. Due to their elastic properties, liquid crystals (LC) are increasingly used to organize matter at the micrometer scale in soft composites. Textures and shapes of LC droplets are currently controlled by the competition between elasticity and anchoring, hydrodynamic flows, or external fields. Molecules adsorbed specifically at LC interfaces are known to orient LC molecules (anchoring effect), but other induced effects have been poorly explored. Using specifically designed amphitropic surfactants, we demonstrate that large-shape transformations can be achieved in direct LC/water emulsions. In particular, we focus on unusual nematic filaments formed from spherical droplets. These results suggest new approaches to design new soft LC composite materials through the adsorption of molecules at liquid crystal interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...