Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 80(11): 2386-2396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37702083

RESUMO

BACKGROUND: Preeclampsia is a hypertensive disorder of pregnancy characterized by chronic placental ischemia and suppression of proangiogenic proteins, causing oxidative stress, hypertension, and maternal systemic organ damage. The transcription factor, PPARγ (peroxisome proliferator-activated receptor-γ) promotes healthy trophoblast differentiation but is dysregulated in the preeclampsia placenta. Our study identifies the beneficial impact of Rosiglitazone-mediated PPARγ-activation in the stressed preeclampsia placenta. METHODS: We used first trimester placentas, preeclamptic and preterm control placentas, and human trophoblast cell lines to study PPARγ activation. RESULTS: Induction of PPARγ activates cell growth and antioxidative stress pathways, including the gene, heme oxygenase 1 (Hmox1). Protein expression of both PPARγ and HO1 (heme oxygenase 1) are reduced in preeclamptic placentas, but Rosiglitazone restores HO1 signaling in a PPARγ-dependent manner. CONCLUSIONS: Restoring disrupted pathways by PPARγ in preeclampsia offers a potential therapeutic pathway to reverse placental damage, extending pregnancy duration, and reduce maternal sequelae. Future research should aim to understand the full scope of impaired PPARγ signaling in the human placenta and focus on compounds for safe use during pregnancy to prevent severe perinatal morbidity and mortality.


Assuntos
Heme Oxigenase-1 , Placenta , Pré-Eclâmpsia , Feminino , Humanos , Recém-Nascido , Gravidez , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Placenta/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Pré-Eclâmpsia/metabolismo , Rosiglitazona/farmacologia , Trofoblastos/metabolismo
2.
Cell Metab ; 35(5): 821-836.e7, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36948185

RESUMO

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic ß cells based on histone mark heterogeneity (ßHI and ßLO). ßHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. ßHI and ßLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, ßHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates ßHI/ßLO ratio in vivo, suggesting that control of ß cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with ßHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct ß cell subtypes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Histonas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Secreção de Insulina
3.
Cells ; 11(21)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36359910

RESUMO

Preeclampsia (PE) is one of the most common causes of maternal-fetal morbidity and mortality world-wide. While the underlying causes of PE remain elusive, aberrant trophoblast differentiation and function are thought to cause an imbalance of secreted angiogenic proteins resulting in systemic endothelial dysfunction and organ damage in the mother. The placental dysfunction is also characterized by a reduction of the transcription factor, peroxisome proliferator activated receptor γ (PPARγ) which normally promotes trophoblast differentiation and healthy placental function. This study aimed to understand how placental activation of PPARγ effects the secretion of angiogenic proteins and subsequently endothelial function. To study this, healthy and PE placental tissues were cultured with or without the PPARγ agonist, Rosiglitazone, and a Luminex assay was performed to measure secreted proteins from the placenta. To assess the angiogenic effects of placental activation of PPARγ, human umbilical vein endothelial cells (HUVECs) were cultured with the placental conditioned media and the net angiogenic potential of these cells was measured by a tube formation assay. This is the first study to show PPARγ's beneficial effect on the angiogenic profile in the human preeclamptic placenta through the reduction of anti-angiogenic angiopoietin-2 and soluble endoglin and the upregulation of pro-angiogenic placental growth factor, fibroblast growth factor-2, heparin-binding epidermal growth factor, and follistatin. The changes in the angiogenic profile were supported by the increased angiogenic potential observed in the HUVECs when cultured with conditioned media from rosiglitazone-treated preeclamptic placentas. The restoration of these disrupted pathways by activation of PPARγ in the preeclamptic placenta offers potential to improve placental and endothelial function in PE.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Placenta/metabolismo , PPAR gama/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Rosiglitazona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...