Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(36): e2304262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984887

RESUMO

Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.


Assuntos
Proteínas de Choque Térmico HSP90 , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo
2.
J Phys Chem B ; 126(38): 7400-7408, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112146

RESUMO

The crowded environment of biological systems such as the interior of living cells is occupied by macromolecules with a broad size distribution. This situation of polydispersity might influence the dependence of the diffusive dynamics of a given tracer macromolecule in a monodisperse solution on its hydrodynamic size and on the volume fraction. The resulting size dependence of diffusive transport crucially influences the function of a living cell. Here, we investigate a simplified model system consisting of two constituents in aqueous solution, namely, of the proteins bovine serum albumin (BSA) and bovine polyclonal gamma-globulin (Ig), systematically depending on the total volume fraction and ratio of these constituents. From high-resolution quasi-elastic neutron spectroscopy, the separate apparent short-time diffusion coefficients for BSA and Ig in the mixture are extracted, which show substantial deviations from the diffusion coefficients measured in monodisperse solutions at the same total volume fraction. These deviations can be modeled quantitatively using results from the short-time rotational and translational diffusion in a two-component hard sphere system with two distinct, effective hydrodynamic radii. Thus, we find that a simple colloid picture well describes short-time diffusion in binary mixtures as a function of the mixing ratio and the total volume fraction. Notably, the self-diffusion of the smaller protein BSA in the mixture is faster than the diffusion in a pure BSA solution, whereas the self-diffusion of Ig in the mixture is slower than in the pure Ig solution.


Assuntos
Soroalbumina Bovina , Albumina Sérica , Coloides , Difusão , Substâncias Macromoleculares , Física , Soroalbumina Bovina/química , Suspensões , gama-Globulinas/química
3.
Soft Matter ; 17(37): 8506-8516, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34490428

RESUMO

The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.


Assuntos
Proteínas , Cloreto de Sódio , Difusão , Soluções , Temperatura
4.
Phys Chem Chem Phys ; 22(33): 18507-18517, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780038

RESUMO

Protein denaturation in concentrated solutions consists of the unfolding of the native protein structure, and subsequent cross-linking into clusters or gel networks. While the kinetic evolution of structure has been studied for some cases, the underlying microscopic dynamics of proteins has so far been neglected. However, protein dynamics is essential to understand the specific nature of assembly processes, such as diffusion-limited growth, or vitrification of dense liquids. Here, we present a study on thermal denaturation of concentrated solutions of bovine serum albumin (BSA) in D2O with and without NaCl. Using small-angle scattering, we provide information on structure before, during and after denaturation. Using quasi-elastic neutron scattering, we monitor in real-time the microscopic dynamics and dynamical confinement throughout the entire denaturation process covering protein unfolding and cross-linking. After denaturation, the protein dynamics is slowed down in salty solutions compared to those in pure water, while the stability and dynamics of the native solution appears unaffected by salt. The approach presented here opens opportunities to link microscopic dynamics to emerging structural properties, with implications for assembly processes in soft and biological matter.


Assuntos
Soroalbumina Bovina/química , Animais , Bovinos , Temperatura Alta , Desnaturação Proteica , Cloreto de Sódio/química
5.
J Phys Chem Lett ; 10(8): 1709-1715, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30897330

RESUMO

The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius Reff = ⟨ Ri3⟩1/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > Reff ( R < Reff) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes.

6.
J Phys Chem B ; 122(35): 8343-8350, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30106587

RESUMO

Protein diffusion is not only an important process ensuring biological function but can also be used as a probe to obtain information on structural properties of protein assemblies in liquid solutions. Here, we explore the oligomerization state of ovalbumin at high protein concentrations by means of its short-time self-diffusion. We employ high-resolution incoherent quasielastic neutron scattering to access the self-diffusion on nanosecond timescales, on which interparticle contacts are not altered. Our results indicate that ovalbumin in aqueous (D2O) solutions occurs in increasingly large assemblies of its monomeric subunits with rising protein concentration. It changes from nearly monomeric toward dimeric and ultimately larger than tetrameric complexes. Simultaneously, we access information on the internal molecular mobility of ovalbumin on the nanometer length scale and compare it with results obtained for bovine serum albumin, immunoglobulin, and ß-lactoglobulin.


Assuntos
Difusão , Lactoglobulinas/química , Ovalbumina/química , Soroalbumina Bovina/química , gama-Globulinas/química , Animais , Bovinos , Galinhas , Multimerização Proteica , Estrutura Quaternária de Proteína
7.
J Phys Chem Lett ; 8(12): 2590-2596, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28525282

RESUMO

We investigate the concentration-controlled formation of clusters in ß-lactoglobulin (BLG) protein solutions combining structural and dynamical scattering techniques. The static structure factor from small-angle X-ray scattering as well as de-Gennes narrowing in the nanosecond diffusion function D(q) from neutron spin echo spectroscopy support a picture of cluster formation. Using neutron backscattering spectroscopy, a monotonous increase of the average hydrodynamic cluster radius is monitored over a broad protein concentration range, corresponding to oligomeric structures of BLG ranging from the native dimers up to roughly four dimers. The results suggest that BLG forms compact clusters that are static on the observation time scale of several nanoseconds. The presented analysis provides a general framework to access the structure and dynamics of macromolecular assemblies in solution.


Assuntos
Lactoglobulinas/química , Proteínas/química , Difusão , Hidrodinâmica , Difração de Nêutrons , Espalhamento de Radiação , Análise Espectral , Água/química , Raios X
8.
Biophys J ; 112(8): 1586-1596, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445750

RESUMO

The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.


Assuntos
Osteopontina/metabolismo , Animais , Bovinos , Elasticidade , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Escherichia coli , Cavalos , Humanos , Simulação de Dinâmica Molecular , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular , Osteopontina/química , Fosforilação , Proteólise , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Soluções , Água/química , Difração de Raios X
9.
J Phys Chem Lett ; 6(13): 2577-82, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26266736

RESUMO

The short-time self-diffusion D of the globular model protein bovine serum albumin in aqueous (D2O) solutions has been measured comprehensively as a function of the protein and trivalent salt (YCl3) concentration, noted cp and cs, respectively. We observe that D follows a universal master curve D(cs,cp) = D(cs = 0,cp) g(cs/cp), where D(cs = 0,cp) is the diffusion coefficient in the absence of salt and g(cs/cp) is a scalar function solely depending on the ratio of the salt and protein concentration. This observation is consistent with a universal scaling of the bonding probability in a picture of cluster formation of patchy particles. The finding corroborates the predictive power of the description of proteins as colloids with distinct attractive ion-activated surface patches.


Assuntos
Cloreto de Sódio/química , Soluções/química , Difusão , Soluções/análise , Água
10.
Phys Chem Chem Phys ; 17(6): 4645-55, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25587698

RESUMO

The dynamics of proteins in solution is a complex and hierarchical process, affected by the aqueous environment as well as temperature. We present a comprehensive study on nanosecond time and nanometer length scales below, at, and above the denaturation temperature Td. Our experimental data evidence dynamical processes in protein solutions on three distinct time scales. We suggest a consistent physical picture of hierarchical protein dynamics: (i) self-diffusion of the entire protein molecule is confirmed to agree with colloid theory for all temperatures where the protein is in its native conformational state. At higher temperatures T > Td, the self-diffusion is strongly obstructed by cross-linking or entanglement. (ii) The amplitude of backbone fluctuations grows with increasing T, and a transition in its dynamics is observed above Td. (iii) The number of mobile side-chains increases sharply at Td while their average dynamics exhibits only little variations. The combination of quasi-elastic neutron scattering and the presented analytical framework provides a detailed microscopic picture of the protein molecular dynamics in solution, thereby reflecting the changes of macroscopic properties such as cluster formation and gelation.


Assuntos
Soroalbumina Bovina/química , Água/química , Animais , Bovinos , Temperatura Alta , Simulação de Dinâmica Molecular , Desnaturação Proteica , Soluções
11.
J Phys Chem B ; 118(25): 7203-9, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24871685

RESUMO

Dynamics in protein solutions is essential for both protein function and cellular processes. The hierarchical complexity of global protein diffusion, side-chain diffusion, and microscopic motions of chemical groups renders a complete understanding challenging. We present results from quasi-elastic neutron scattering on protein solutions of γ-globulin over a wide range of volume fractions. Translational and rotational diffusion can be self-consistently separated from internal motions. The global diffusion is consistent with predictions for effective spheres even though the branched molecular shape differs considerably from a colloidal sphere. The internal motions are characterized both geometrically and dynamically, suggesting a picture of methyl rotations and restricted diffusion of side chains. We show that the advent of new neutron spectrometers allows the study of current questions including the coupling of intracellular dynamics and protein function.


Assuntos
gama-Globulinas/química , Óxido de Deutério/química , Difusão , Hidrodinâmica , Difração de Nêutrons , Soluções/química , Água/química
12.
Soft Matter ; 10(6): 894-902, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24835564

RESUMO

The formation of protein clusters as precursors for crystallization and phase separation is of fundamental and practical interest in protein science. Using multivalent ions, the strengths of both long-range Coulomb repulsion and short-range attraction can be tuned in protein solutions, representing a well-controlled model system to study static and dynamic properties of clustering during the transition from a charge-stabilized to an aggregate regime. Here, we study compressibility, diffusion, and size of solutes by means of static (SLS) and dynamic light scattering (DLS) in solutions of bovine serum albumin (BSA) and YCl3. For this and comparable systems, an increasing screening and ultimately inversion of the protein surface charge induce a rich phase behavior including reentrant condensation, liquid-liquid phase separation and crystallization, which puts the cluster formation in the context of precursor formation and nucleation of liquid and crystalline phases. We find that, approaching the turbid aggregate regime with increasing salt concentration cs, the diffusion coefficients decrease and the scattered intensity increases by orders of magnitude, evidencing increasing correlation lengths likely associated with clustering. The combination of static and dynamic observations suggests the formation of BSA clusters with a size on the order of 100 nm. The global thermodynamic state seems to be stable over at least several hours. Surprisingly, results on collective diffusion and inverse compressibility from different protein concentrations can be rescaled into master curves as a function of cs/c*, where c* is the critical salt concentration of the transition to the turbid aggregate regime.


Assuntos
Íons/química , Soroalbumina Bovina/química , Cloreto de Sódio/química , Animais , Bovinos , Cristalização , Espalhamento de Radiação , Soluções/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...