Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
IEEE Trans Magn ; 57(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35813117

RESUMO

We have designed, developed and evaluated an innovative portable magneto-optical detector (MOD) in which a light beam with variable polarization passes through a fluid sample immersed in a variable magnetic field. The light intensity is measured downstream along the forward scattering direction. The field is turned on and off through the in-and-out motion of nearby permanent magnets. As a result, for sufficiently magnetically and optically anisotropic samples, the optical absorption is sensitive to changes in the light polarization. Both detection and characterization applications are therefore available. For instance, both the degree of malaria infection can be measured and hemozoin crystalline properties can be studied. We present experimental results for synthetic hemozoin, and describe them in terms of the basic physics and chemistry underlying the correlations of the directions of the external magnetic field and the light beam polarization. We connect this work to a commercialized product for malaria detection and compare it to other magneto-optical instruments and methods. We conduct tests of absorption parameters, the electric polarizability tensor, and we discuss the connection to magnetic and electric dipole moments.

2.
Vaccines (Basel) ; 8(2)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272595

RESUMO

Zika virus (ZIKV) is a significant public health concern due to the pathogen's ability to be transmitted by either mosquito bite or sexual transmission, allowing spread to occur throughout the world. The potential consequences of ZIKV infection to human health, specifically neonates, necessitates the development of a safe and effective Zika virus vaccine. Here, we developed an intranasal Zika vaccine based upon the replication-deficient human adenovirus serotype 5 (hAd5) expressing ZIKV pre-membrane and envelope protein (hAd5-ZKV). The hAd5-ZKV vaccine is able to induce both cell-mediated and humoral immune responses to ZIKV epitopes. Importantly, this vaccine generated CD8+ T cells specific for a dominant ZIKV T cell epitope and is shown to be protective against a ZIKV challenge by using a pre-clinical model of ZIKV disease. We also demonstrate that the vaccine expresses pre-membrane and envelope protein in a confirmation recognized by ZIKV experienced individuals. Our studies demonstrate that this adenovirus-based vaccine expressing ZIKV proteins is immunogenic and protective in mice, and it encodes ZIKV proteins in a conformation recognized by the human antibody repertoire.

3.
Malar J ; 17(1): 190, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724219

RESUMO

BACKGROUND: Plasmodium falciparum is the deadliest strain of malaria and the mortality rate is increasing because of pathogen drug resistance. Increasing knowledge of the parasite life cycle and mechanism of infection may provide new models for improved treatment paradigms. This study sought to investigate the paramagnetic nature of the parasite's haemozoin to inhibit parasite viability. RESULTS: Paramagnetic haemozoin crystals, a byproduct of the parasite's haemoglobin digestion, interact with a rotating magnetic field, which prevents their complete formation, causing the accumulation of free haem, which is lethal to the parasites. Plasmodium falciparum cultures of different stages of intraerythrocytic growth (rings, trophozoites, and schizonts) were exposed to a magnetic field of 0.46 T at frequencies of 0 Hz (static), 1, 5, and 10 Hz for 48 h. The numbers of parasites were counted over the course of one intraerythrocytic life cycle via flow cytometry. At 10 Hz the schizont life stage was most affected by the rotating magnetic fields (p = 0.0075) as compared to a static magnetic field of the same strength. Parasite growth in the presence of a static magnetic field appears to aid parasite growth. CONCLUSIONS: Sequestration of the toxic haem resulting from haemoglobin digestion is key for the parasites' survival and the focus of almost all existing anti-malarial drugs. Understanding how the parasites create the haemozoin molecule and the disruption of its creation aids in the development of drugs to combat this disease.


Assuntos
Hemeproteínas/efeitos da radiação , Campos Magnéticos/efeitos adversos , Plasmodium falciparum/efeitos da radiação , Proteínas de Protozoários/efeitos da radiação , Citometria de Fluxo , Plasmodium falciparum/crescimento & desenvolvimento , Esquizontes/efeitos da radiação , Trofozoítos/efeitos da radiação
4.
Malar J ; 16(1): 442, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100506

RESUMO

BACKGROUND: Plasmodium vivax is the most prevalent human malaria parasite and is likely to increase proportionally as malaria control efforts more rapidly impact the prevalence of Plasmodium falciparum. Despite the prominence of P. vivax as a major human pathogen, vivax malaria qualifies as a neglected and under-studied tropical disease. Significant challenges bringing P. vivax into the laboratory, particularly the capacity for long-term propagation of well-characterized strains, have limited the study of this parasite's red blood cell (RBC) invasion mechanism, blood-stage development, gene expression, and genetic manipulation. METHODS AND RESULTS: Patient isolates of P. vivax have been collected and cryopreserved in the rural community of Ampasimpotsy, located in the Tsiroanomandidy Health District of Madagascar. Periodic, monthly overland transport of these cryopreserved isolates to the country's National Malaria Control Programme laboratory in Antananarivo preceded onward sample transfer to laboratories at Case Western Reserve University, USA. There, the P. vivax isolates have been cultured through propagation in the RBCs of Saimiri boliviensis. For the four patient isolates studied to-date, the median time interval between sample collection and in vitro culture has been 454 days (range 166-961 days). The median time in culture, continually documented by light microscopy, has been 159 days; isolate AMP2014.01 was continuously propagated for 233 days. Further studies show that the P. vivax parasites propagated in Saimiri RBCs retain their ability to invade human RBCs, and can be cryopreserved, thawed and successfully returned to productive in vitro culture. CONCLUSIONS/SIGNIFICANCE: Long-term culture of P. vivax is possible in the RBCs of Saimiri boliviensis. These studies provide an alternative to propagation of P. vivax in live animals that are becoming more restricted. In vitro culture of P. vivax in Saimiri RBCs provides an opening to stabilize patient isolates, which would serve as precious resources to apply new strategies for investigating the molecular and cellular biology of this important malaria parasite.


Assuntos
Técnicas de Cultura de Células/métodos , Plasmodium vivax/fisiologia , Saimiri/parasitologia , Animais , Criopreservação , Eritrócitos/parasitologia , Humanos , Madagáscar , Saimiri/sangue , Manejo de Espécimes
5.
Expert Rev Anti Infect Ther ; 14(10): 879-83, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27530228

RESUMO

Malaria remains widespread throughout the tropics and is a burden to the estimated 3.5 billion people who are exposed annually. The lack of a fast and accurate diagnostic method contributes to preventable malaria deaths and its continued transmission. In many areas diagnosis is made solely based on clinical presentation. Current methods for malaria diagnosis take more than 20 minutes from the time blood is drawn and are frequently inaccurate. The introduction of an accurate malaria diagnostic that can provide a result in less than 1 minute would allow for widespread screening and treatment of endemic populations, and enable regions that have gained a foothold against malaria to prevent its return. Using malaria parasites' waste product, hemozoin, as a biomarker for the presence of malaria could be the tool needed to develop this rapid test.


Assuntos
Hemeproteínas/análise , Malária/diagnóstico , Biomarcadores/sangue , Humanos , Malária/sangue , Malária/parasitologia , Programas de Rastreamento , Sensibilidade e Especificidade
7.
Malar J ; 15: 113, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911917

RESUMO

BACKGROUND: Conventional malaria parasite detection methods, such as rapid diagnostic tests (RDT) and light microscopy (LM), are not sensitive enough to detect low level parasites and identification of gametocytes in the peripheral blood. A modified and sensitive laboratory prototype, Magnetic Deposition Microscopy (MDM) was developed to increase the detection of sub-microscopic parasitaemia and estimation of gametocytes density in asymptomatic school children. METHODS: Blood samples were collected from 303 asymptomatic school children from seven villages in Bagamoyo district in Tanzania. Participants were screened for presence of malaria parasites in the field using RDT and MDM whereas further examination of malaria parasites was done in the laboratory by LM. LM and MDM readings were used to calculate densities and estimate prevalence of asexual and sexual stages of the parasite. RESULTS: Plasmodium falciparum parasites (asexual and sexual stages) were detected in 23 (7.6 %), 52 (17.2 %), and 59 (19.5 %) out of 303 samples by LM, RDT and MDM respectively. Gametocytes were detected in 4 (1.3 %) and 12 (4.0 %) out of the same numbers of samples by LM, and MDM, respectively. Likewise, in vitro results conducted on two laboratory strains of P. falciparum, 3D7 and NF54 to assess MDM sensitivity on gametocytes detection and its application on concentrating gametocytes indicated that gametocytes were enriched by MDM by 10-fold higher than LM. Late stages of the parasite strains, 3D7 and NF54 were enriched by MDM by a factor of 20.5 and 35.6, respectively. MDM was more specific than LM and RDT by 87.5 % (95 %, CI 71.2-89.6 %) and 89.0 % (95 % CI 82.9-91.4) respectively. It was also found that MDM sensitivity was 62.5 % (95 % CI 49.5-71.8) when compared with RDT while with LM was 36.5 % (95 % CI 32.2-60.5). CONCLUSIONS: These findings provide strong evidence that MDM enhanced detection of sub-microscopic P. falciparum infections and estimation of gametocyte density compared to current malaria diagnostic tools. In addition, MDM is superior to LM in detecting sub-microscopic gametocytaemia. Therefore, MDM is a potential tool for low-level parasitaemia identification and quantification with possible application in malaria transmission research.


Assuntos
Malária Falciparum/parasitologia , Microscopia/métodos , Carga Parasitária/métodos , Plasmodium falciparum/isolamento & purificação , Adolescente , Infecções Assintomáticas , Criança , Estudos Transversais , Humanos , Parasitemia/parasitologia , Sensibilidade e Especificidade , Tanzânia
8.
PLoS One ; 10(10): e0139253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488301

RESUMO

Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear) DNA. Reduction in nuclear DNA (nDNA) content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts). We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA) by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS) analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA) content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.


Assuntos
Neoplasias do Colo/genética , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Células Cultivadas , Colo/metabolismo , DNA Mitocondrial/sangue , Variação Genética/genética , Genoma Mitocondrial , Humanos
9.
Org Lett ; 16(2): 346-9, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24350818

RESUMO

An antimalarial screen for plants collected from Papua New Guinea identified an extract of Horsfieldia spicata as having activity. Isolation of the active constituents led to the identification of two new compounds: myristicyclins A (1) and B (2). Both compounds are procyanidin-like congeners of myristinins lacking a pendant aromatic ring. Myristicyclin A was found to inhibit the ring, trophozoite, and schizont stages of Plasmodium falciparum at similar concentrations in the mid-µM range.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Biflavonoides/isolamento & purificação , Biflavonoides/farmacologia , Catequina/isolamento & purificação , Catequina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia , Antimaláricos/química , Biflavonoides/química , Catequina/química , Malária Falciparum/tratamento farmacológico , Estrutura Molecular , Papua Nova Guiné , Plasmodium falciparum/crescimento & desenvolvimento , Proantocianidinas/química , Estereoisomerismo
10.
Curr Protoc Cytom ; Chapter 11: 11.20.1-11.20.23, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23835802

RESUMO

Malaria, caused by protozoan Plasmodium parasites, kills ~800,000 people each year. Exact figures are uncertain because presumptive diagnoses are often made without identifying parasites in patients' blood either by microscopy, using Giemsa's century-old stain, or by simpler tests that are ultimately dependent on microscopy for quality control. Microscopy itself relies on trained observers' ability to detect subtle morphological features of parasitized red blood cells, only a few of which may be present on a slide. Quantitative and objective flow cytometric measurements of cellular constituents such as DNA, RNA, and the malaria pigment hemozoin are now useful in research in malaria biology and pharmacology, and can provide more reliable identification of parasite species and developmental stages and better detection of low-density parasitemia than could microscopy. The same measurements can now be implemented in much smaller, simpler, cheaper imaging cytometers, potentially providing a more accurate and precise diagnostic modality.


Assuntos
Citometria de Fluxo/métodos , Malária/diagnóstico , Malária/patologia , Microscopia/métodos , Animais , Corantes Azur , Pesquisa Biomédica , Humanos , Malária/epidemiologia , Malária/parasitologia , Parasitos/fisiologia
11.
PLoS Med ; 9(9): e1001305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973182

RESUMO

BACKGROUND: The erythrocyte polymorphism, Southeast Asian ovalocytosis (SAO) (which results from a 27-base pair deletion in the erythrocyte band 3 gene, SLC4A1Δ27) protects against cerebral malaria caused by Plasmodium falciparum; however, it is unknown whether this polymorphism also protects against P. vivax infection and disease. METHODS AND FINDINGS: The association between SAO and P. vivax infection was examined through genotyping of 1,975 children enrolled in three independent epidemiological studies conducted in the Madang area of Papua New Guinea. SAO was associated with a statistically significant 46% reduction in the incidence of clinical P. vivax episodes (adjusted incidence rate ratio [IRR] = 0.54, 95% CI 0.40-0.72, p<0.0001) in a cohort of infants aged 3-21 months and a significant 52% reduction in P. vivax (blood-stage) reinfection diagnosed by PCR (95% CI 22-71, p = 0.003) and 55% by light microscopy (95% CI 13-77, p = 0.014), respectively, in a cohort of children aged 5-14 years. SAO was also associated with a reduction in risk of P. vivax parasitaemia in children 3-21 months (1,111/µl versus 636/µl, p = 0.011) and prevalence of P. vivax infections in children 15-21 months (odds ratio [OR] = 0.39, 95% CI 0.23-0.67, p = 0.001). In a case-control study of children aged 0.5-10 years, no child with SAO was found among 27 cases with severe P. vivax or mixed P. falciparum/P. vivax malaria (OR = 0, 95% CI 0-1.56, p = 0.11). SAO was associated with protection against severe P. falciparum malaria (OR = 0.38, 95% CI 0.15-0.87, p = 0.014) but no effect was seen on either the risk of acquiring blood-stage infections or uncomplicated episodes with P. falciparum. Although Duffy antigen receptor expression and function were not affected on SAO erythrocytes compared to non-SAO children, high level (>90% binding inhibition) P. vivax Duffy binding protein-specific binding inhibitory antibodies were observed significantly more often in sera from SAO than non-SAO children (SAO, 22.2%; non-SAO, 6.7%; p = 0.008). CONCLUSIONS: In three independent studies, we observed strong associations between SAO and protection against P. vivax malaria by a mechanism that is independent of the Duffy antigen. P. vivax malaria may have contributed to shaping the unique host genetic adaptations to malaria in Asian and Oceanic populations. Please see later in the article for the Editors' Summary.


Assuntos
Eliptocitose Hereditária/epidemiologia , Malária Vivax/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Microscopia , Papua Nova Guiné/epidemiologia , Reação em Cadeia da Polimerase
12.
Exp Parasitol ; 132(2): 304-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22841523

RESUMO

Human reticulocytes are one of the fundamental components needed to study the in vitro invasion processes of the human malaria parasite Plasmodium vivax. Additionally examinations of reticulocytes and their binding proteins are difficult in areas of the world that do not have access to advanced equipment or stem cell lines. These issues are particularly relevant to malaria vaccine candidate studies that are directed against surface proteins that the parasites use to gain entry into erythrocytes. Described here is a simple and inexpensive method to increase the reticulocyte count of cord blood samples. Exposure of cord blood to hypotonic saline (0.2%) for 5 min selectively lyses the non-reticulocytes resulting in an average 3.6-fold increase in reticulocyte count. Our studies show that this enrichment process does not damage the hemoglobin of the remaining erythrocytes which are still capable of supporting Plasmodium falciparum invasion and growth. This economical and rapid method of enrichment could facilitate studies of in vitro laboratory culturing of other malaria parasite species which preferentially invade reticulocytes such as P. vivax.


Assuntos
Sangue Fetal/citologia , Soluções Hipotônicas/farmacologia , Reticulócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/parasitologia , Hemoglobinas/análise , Hemoglobinas/metabolismo , Humanos , Recém-Nascido , Plasmodium falciparum/crescimento & desenvolvimento , Gravidez , Contagem de Reticulócitos , Reticulócitos/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 108(50): 20113-8, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123959

RESUMO

Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.


Assuntos
Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/parasitologia , Predisposição Genética para Doença , Malária Vivax/genética , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Polimorfismo Genético , Receptores de Superfície Celular/genética , Anticorpos Bloqueadores/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/metabolismo , Arilsulfatases/antagonistas & inibidores , Arilsulfatases/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/metabolismo , Frequência do Gene/genética , Geografia , Humanos , Ligação Proteica , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Risco
14.
Bioorg Med Chem ; 19(22): 6604-7, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21696970

RESUMO

A new fascaplysin analogue, 3-bromohomofascaplysin A (1), along with two known analogues, homofascaplysin A (2) and fascaplysin (3), were isolated from a Fijian Didemnum sp. ascidian. The absolute configurations of 3-bromohomofascaplysin A (1) and homofascaplysin A (2) were determined via experimental and theoretically calculated ECD spectra. The differential activities of 1-3 against different blood-borne life stages of the malaria pathogen Plasmodium falciparum were assessed. Homofascaplysin A (2) displayed an IC(50) of 0.55±0.11 nM against ring stage parasites and 105±38 nM against all live parasites. Given the stronger resistance of ring stage parasites against most current antimalarials relative to the other blood stages, homofascaplysin A (2) represents a promising agent for treatment of drug resistant malaria.


Assuntos
Indóis/química , Urocordados/química , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/isolamento & purificação , Indóis/isolamento & purificação , Indóis/farmacologia , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Plasmodium falciparum/efeitos dos fármacos
15.
Pharmaceuticals (Basel) ; 4(5): 681-712, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21625331

RESUMO

The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i) re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii) repurposing drugs that are currently used to treat other infections or diseases; (iii) chemically modifying existing antimalarial compounds; (iv) exploring natural sources; (v) large-scale screening of diverse chemical libraries; and (vi) through parasite genome-based ("targeted") discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum), and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs), and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into "short term" (4. Feasible options for now) and "long term" (5. Next generation of antimalarial treatment-Approaches and candidates). However, these two categories are interrelated, and the approaches in both should be implemented in parallel with focus on developing a successful, long-lasting antimalarial chemotherapy.

16.
J Immunol Methods ; 367(1-2): 1-16, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21296083

RESUMO

Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries.


Assuntos
Citometria de Fluxo/métodos , Plasmodium/isolamento & purificação , Animais , Corantes , DNA de Protozoário/análise , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida , Parasitemia/diagnóstico , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 107(13): 5967-71, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231434

RESUMO

Malaria therapy, experimental, and epidemiological studies have shown that erythrocyte Duffy blood group-negative people, largely of African ancestry, are resistant to erythrocyte Plasmodium vivax infection. These findings established a paradigm that the Duffy antigen is required for P. vivax erythrocyte invasion. P. vivax is endemic in Madagascar, where admixture of Duffy-negative and Duffy-positive populations of diverse ethnic backgrounds has occurred over 2 millennia. There, we investigated susceptibility to P. vivax blood-stage infection and disease in association with Duffy blood group polymorphism. Duffy blood group genotyping identified 72% Duffy-negative individuals (FY*B(ES)/*B(ES)) in community surveys conducted at eight sentinel sites. Flow cytometry and adsorption-elution results confirmed the absence of Duffy antigen expression on Duffy-negative erythrocytes. P. vivax PCR positivity was observed in 8.8% (42/476) of asymptomatic Duffy-negative people. Clinical vivax malaria was identified in Duffy-negative subjects with nine P. vivax monoinfections and eight mixed Plasmodium species infections that included P. vivax (4.9 and 4.4% of 183 participants, respectively). Microscopy examination of blood smears confirmed blood-stage development of P. vivax, including gametocytes. Genotyping of polymorphic surface and microsatellite markers suggested that multiple P. vivax strains were infecting Duffy-negative people. In Madagascar, P. vivax has broken through its dependence on the Duffy antigen for establishing human blood-stage infection and disease. Further studies are necessary to identify the parasite and host molecules that enable this Duffy-independent P. vivax invasion of human erythrocytes.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Malária Vivax/sangue , Adolescente , Povo Asiático/genética , Sequência de Bases , População Negra/genética , Criança , Pré-Escolar , Primers do DNA/genética , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/imunologia , Eritrócitos/parasitologia , Feminino , Estudos de Associação Genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Madagáscar/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/genética , Masculino , Dados de Sequência Molecular , Plasmodium vivax/genética , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/patogenicidade
18.
Bioorg Med Chem Lett ; 19(18): 5452-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19666223

RESUMO

A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.


Assuntos
Antimaláricos/farmacologia , DNA de Protozoário/análise , Citometria de Fluxo/métodos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , RNA de Protozoário/análise , Animais , Antimaláricos/química , Descoberta de Drogas , Resistência a Medicamentos , Eritrócitos/parasitologia , Citometria de Fluxo/economia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade
19.
Malar J ; 7: 66, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439240

RESUMO

BACKGROUND: Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG). METHODS AND FINDINGS: Individuals with Plasmodium falciparum malaria symptoms (n = 55) provided samples for conventional blood smear (CBS) and magnetic deposition microscopy (MDM) diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS) for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13), trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01), schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08) and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002) parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. CONCLUSION: MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.


Assuntos
Eritrócitos/parasitologia , Magnetismo , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Animais , DNA de Protozoário/genética , DNA Ribossômico/genética , Eritrócitos/citologia , Hemeproteínas/metabolismo , Humanos , Malária Falciparum/epidemiologia , Papua Nova Guiné/epidemiologia , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Esquizontes/citologia , Trofozoítos/citologia
20.
Cytometry A ; 73(6): 546-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18302186

RESUMO

The complex life cycle of Plasmodium falciparum (Pf) makes it difficult to limit infections and reduce the risk of severe malaria. Improved understanding of Pf blood-stage growth and development would provide new opportunities to evaluate and interfere with successful completion of the parasite's life cycle. Cultured blood stage Pf was incubated with Hoechst 33342 (HO) and thiazole orange (TO) to stain DNA and total nucleic acids, respectively. Correlated HO and TO fluorescence emissions were then measured by flow cytometry. Complex bivariate data patterns were analyzed by manual cluster gating to quantify parasite life cycle stages. The permutations of viable staining with both reagents were tested for optimal detection of parasitized RBC (pRBC). Pf cultures were exposed to HO and TO simultaneously to achieve optimal staining of pRBC and consistent quantification of early and late stages of the replicative cycle (rings through schizonts). Staining of Pf nucleic acids allows for analysis of parasite development in the absence of fixatives, lysis, or radioactivity to enable examination of erythrocytes from parasite invasion through schizont rupture using sensitive and rapid assay procedures. Investigation of the mechanisms by which anti-malarial drugs and antibodies act against different Pf lifecycle stages will be aided by this cytometric strategy.


Assuntos
Benzimidazóis , Benzotiazóis , Citometria de Fluxo/métodos , Corantes Fluorescentes , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas , Animais , DNA de Protozoário/análise , Eritrócitos/microbiologia , Humanos , Estágios do Ciclo de Vida/fisiologia , Malária Falciparum/diagnóstico , RNA de Protozoário/análise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...