Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181891

RESUMO

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Regulação da Expressão Gênica , Rim Cefálico , Células Endoteliais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , RNA Nuclear Pequeno , Mamíferos
2.
Front Immunol ; 14: 1238321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649482

RESUMO

T-cell mediated immunity relies on a vast array of antigen specific T cell receptors (TR). Characterizing the structure of TR loci is essential to study the diversity and composition of T cell responses in vertebrate species. The lack of good-quality genome assemblies, and the difficulty to perform a reliably mapping of multiple highly similar TR sequences, have hindered the study of these loci in non-model organisms. High-quality genome assemblies are now available for the two main genera of Salmonids, Salmo and Oncorhynchus. We present here a full description and annotation of the TRB loci located on chromosomes 19 and 25 of rainbow trout (Oncorhynchus mykiss). To get insight about variations of the structure and composition of TRB locus across salmonids, we compared rainbow trout TRB loci with other salmonid species and confirmed that the basic structure of salmonid TRB locus is a double set of two TRBV-D-J-C loci in opposite orientation on two different chromosomes. Our data shed light on the evolution of TRB loci in Salmonids after their whole genome duplication (WGD). We established a coherent nomenclature of salmonid TRB loci based on comprehensive annotation. Our work provides a fundamental basis for monitoring salmonid T cell responses by TRB repertoire sequencing.


Assuntos
Oncorhynchus mykiss , Animais , Humanos , Oncorhynchus mykiss/genética , Cromossomos Humanos Par 19 , Imunidade Celular
3.
One Health ; 16: 100492, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36710856

RESUMO

Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection.

4.
Front Immunol ; 13: 930312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784332

RESUMO

Protective cellular immune responses have been difficult to study in fish, due to lack of basic understanding of their T cell populations, and tools to study them. Cellular immunity is thus mostly ignored in vaccination and infection studies compared to humoral responses. High throughput sequencing, as well as access to well assembled genomes, now advances studies of cellular responses. Here we have used such resources to describe organization of T cell receptor beta genes in Atlantic salmon. Salmonids experienced a unique whole genome duplication approximately 94 million years ago, which provided these species with many functional duplicate genes, where some duplicates have evolved new functions or sub-functions of the original gene copy. This is also the case for T cell receptor beta, where Atlantic salmon has retained two paralogue T cell receptor beta regions on chromosomes 01 and 09. Compared to catfish and zebrafish, the genomic organization in both regions is unique, each chromosomal region organized with dual variable- diversity- joining- constant genes in a head to head orientation. Sequence identity of the chromosomal constant sequences between TRB01 and TRB09 is suggestive of rapid diversification, with only 67 percent as opposed to the average 82-90 percent for other duplicated genes. Using virus challenged samples we find both regions expressing bona fide functional T cell receptor beta molecules. Adding the 292 variable T cell receptor alpha genes to the 100 variable TRB genes from 14 subgroups, Atlantic salmon has one of the most diverse T cell receptor alpha beta repertoire of any vertebrate studied so far. Perhaps salmonid cellular immunity is more advanced than we have imagined.


Assuntos
Salmo salar , Tetraploidia , Animais , Filogenia , Receptores de Antígenos de Linfócitos T , Salmo salar/genética , Peixe-Zebra
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903649

RESUMO

Two classes of major histocompatibility complex (MHC) molecules, MHC class I and class II, play important roles in our immune system, presenting antigens to functionally distinct T lymphocyte populations. However, the origin of this essential MHC class divergence is poorly understood. Here, we discovered a category of MHC molecules (W-category) in the most primitive jawed vertebrates, cartilaginous fish, and also in bony fish and tetrapods. W-category, surprisingly, possesses class II-type α- and ß-chain organization together with class I-specific sequence motifs for interdomain binding, and the W-category α2 domain shows unprecedented, phylogenetic similarity with ß2-microglobulin of class I. Based on the results, we propose a model in which the ancestral MHC class I molecule evolved from class II-type W-category. The discovery of the ancient MHC group, W-category, sheds a light on the long-standing critical question of the MHC class divergence and suggests that class II type came first.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Complexo Principal de Histocompatibilidade/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Evolução Molecular , Peixes/classificação , Peixes/genética , Peixes/imunologia , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe II/química , Humanos , Família Multigênica , Filogenia , Domínios Proteicos , Multimerização Proteica , Vertebrados/classificação , Vertebrados/genética , Vertebrados/imunologia
6.
Immunogenetics ; 73(1): 79-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33225379

RESUMO

Major histocompatibility complex (MHC) genes are key players in the adaptive immunity providing a defense against invading pathogens. Although the basic structures are similar when comparing mammalian and teleost MHC class II (MHCII) molecules, there are also clear-cut differences. Based on structural requirements, the teleosts non-classical MHCII molecules do not comply with a function similar to the human HLA-DM and HLA-DO, i.e., assisting in peptide loading and editing of classical MHCII molecules. We have previously studied the evolution of teleost class II genes identifying various lineages and tracing their phylogenetic occurrence back to ancient ray-finned fishes. We found no syntenic MHCII regions shared between cyprinids, salmonids, and neoteleosts, suggesting regional instabilities. Salmonids have experienced a unique whole genome duplication 94 million years ago, providing them with the opportunity to experiment with gene duplicates. Many salmonid genomes have recently become available, and here we set out to investigate how MHCII has evolved in salmonids using Northern pike as a diploid sister phyla, that split from the salmonid lineage prior to the fourth whole genome duplication (4WGD) event. We identified 120 MHCII genes in pike and salmonids, ranging from 11 to 20 genes per species analyzed where DB-group genes had the most expansions. Comparing the MHC of Northern pike with that of Atlantic salmon and other salmonids species provides a tale of gene loss, translocations, and genome rearrangements.


Assuntos
Duplicação Gênica , Genes MHC da Classe II/genética , Genoma/genética , Salmonidae/genética , Animais , Mapeamento Cromossômico , Esocidae/classificação , Esocidae/genética , Esocidae/imunologia , Evolução Molecular , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Filogenia , Salmonidae/classificação , Salmonidae/imunologia
7.
Front Immunol ; 11: 571650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123146

RESUMO

Induction of cellular immune responses rely on Major histocompatibility complex (MHC) molecules presenting pathogenic peptides to T cells. Peptide processing, transport, loading and editing is a constitutive process in most cell types, but is accelerated upon infection. Recently, an unexpected complexity in the number of functional genes involved in MHC class I peptide cleavage, peptide transport, peptide loading and editing was found in teleosts, originating from the second and third whole genome duplication events. Salmonids have expanded upon this with functional duplicates also from a fourth unique salmonid whole genome duplication. However, little is known about how individual gene duplicates respond in the context of stimulation. Here we set out to investigate how interferon gamma (IFNg) regulates the transcription of immune genes in Atlantic salmon with particular focus on gene duplicates and MHC pathways. We identified a range of response patterns in Atlantic salmon gene duplicates, with upregulation of all duplicates for some genes, like interferon regulatory factor 1 (IRF1) and interferon induced protein 44-like (IFI44.L), but only induction of one or a few duplicates of other genes, such as TAPBP and ERAP2. A master regulator turned out to be the IRF1 and not the enhanceosome as seen in mammals. If IRF1 also collaborates with CIITA and possibly NLRC5 in regulating IFNg induction of MHCI and MHCII expression in Atlantic salmon, as in zebrafish, remains to be established. Altogether, our results show the importance of deciphering between gene duplicates, as they often respond very differently to stimulation and may have different biological functions.


Assuntos
Proteínas de Peixes/genética , Rim Cefálico/patologia , Antígenos de Histocompatibilidade Classe I/genética , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade/genética , Proteínas Nucleares/genética , Salmo salar/imunologia , Transativadores/genética , Animais , Linhagem Celular , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética , Salmo salar/genética , Transativadores/metabolismo , Peixe-Zebra/genética
8.
Immunogenetics ; 72(1-2): 133, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822946

RESUMO

The original version of this article was published without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed.

9.
Immunogenetics ; 72(1-2): 89-100, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713647

RESUMO

The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Salmo salar/genética , Salmo salar/imunologia , Alelos , Animais , Bases de Dados Factuais , Evolução Molecular , Variação Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína
10.
Cells ; 8(9)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505831

RESUMO

A unique new nonclassical MHC class I lineage was found in Teleostei (teleosts, modern bony fish, e.g., zebrafish) and Holostei (a group of primitive bony fish, e.g., spotted gar), which was designated "H" (from "hexa") for being the sixth lineage discovered in teleosts. A high level of divergence of the teleost sequences explains why the lineage was not recognized previously. The spotted gar H molecule possesses the three MHC class I consensus extracellular domains α1, α2, and α3. However, throughout teleost H molecules, the α3 domain was lost and the α1 domains showed features of deterioration. In fishes of the two closely related teleost orders Characiformes (e.g., Mexican tetra) and Siluriformes (e.g., channel catfish), the H ectodomain deterioration proceeded furthest, with H molecules of some fishes apparently having lost the entire α1 or α2 domain plus additional stretches within the remaining other (α1 or α2) domain. Despite these dramatic ectodomain changes, teleost H sequences possess rather large, unique, well-conserved tyrosine-containing cytoplasmic tail motifs, which suggests an important role in intracellular signaling. To our knowledge, this is the first description of a group of MHC class I molecules in which, judging from the sequence conservation pattern, the cytoplasmic tail is expected to have a more important conserved function than the ectodomain.


Assuntos
Peixes/imunologia , Genes MHC Classe I/genética , Antígenos de Histocompatibilidade Classe I/genética , Sequência de Aminoácidos/genética , Animais , Sequência Conservada/genética , Evolução Molecular , Peixes/genética , Genes MHC Classe I/imunologia , Filogenia
11.
F1000Res ; 7: 963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135730

RESUMO

This correspondence concerns a publication by Malmstrøm et al. in Nature Genetics in October 2016. Malmstrøm et al. made an important contribution to fish phylogeny research by using low-coverage genome sequencing for comparison of 66 teleost (modern bony) fish species, with 64 of those 66 belonging to the species-rich clade Neoteleostei, and with 27 of those 64 belonging to the order Gadiformes. For these 66 species, Malmstrøm et al. estimated numbers of genes belonging to the major histocompatibility complex (MHC) class I lineages U and Z and concluded that in teleost fish these combined numbers are positively associated with, and a driving factor of, the rates of establishment of new fish species (speciation rates). They also claimed that functional genes for the MHC class II system molecules MHC IIA, MHC IIB, CD4 and CD74 were lost in early Gadiformes. Our main criticisms are (1) that the authors did not provide sufficient evidence for presence or absence of intact functional MHC class I or MHC class II system genes, (2) that they did not discuss that an MHC subpopulation gene number alone is a very incomplete measure of MHC variance, and (3) that the MHC system is more likely to reduce speciation rates than to enhance them. Furthermore, their use of the Ornstein-Uhlenbeck model is a typical example of overly naïve use of that model system. In short, we conclude that their new model of MHC class I evolution, reflected in their title "Evolution of the immune system influences speciation rates in teleost fish", is unsubstantiated, and that their "pinpointing" of the functional loss of the MHC class II system and all the important MHC class II system genes to the onset of Gadiformes is preliminary, because they did not sufficiently investigate the species at the clade border.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/genética , Antígenos de Histocompatibilidade Classe I/genética , Modelos Genéticos , Filogenia , Animais , Sequenciamento Completo do Genoma
12.
Immunogenetics ; 70(10): 625-632, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30039257

RESUMO

Significant progress has been made over the last decade in defining major histocompatibility complex (MHC) diversity at the nucleotide, allele, haplotype, diplotype, and population levels in many non-human species. Much of this progress has been driven by the increased availability and reduced costs associated with nucleotide sequencing technologies. This report provides an update on the activities of the comparative MHC nomenclature committee which is a standing committee of both the International Society for Animal Genetics (ISAG) and the International Union of Immunological Societies (IUIS) where it operates under the umbrella of the Veterinary Immunology Committee (VIC). A previous report from this committee in 2006 defined the role of the committee in providing guidance in the development of a standardized nomenclature for genes and alleles at MHC loci in non-human species. It described the establishment of the Immuno Polymorphism Database, IPD-MHC, which continues to provide public access to high quality MHC sequence data across a range of species. In this report, guidelines for the continued development of a universal MHC nomenclature framework are described, summarizing the continued development of each species section within the IPD-MHC project.


Assuntos
Bases de Dados Factuais , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/genética , Alelos , Animais , Haplótipos/genética , Haplótipos/imunologia , Antígenos de Histocompatibilidade/classificação , Antígenos de Histocompatibilidade/imunologia , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Filogenia
13.
BMC Evol Biol ; 18(1): 25, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471808

RESUMO

BACKGROUND: In sharks, chickens, rats, frogs, medaka and zebrafish there is haplotypic variation in MHC class I and closely linked genes involved in antigen processing, peptide translocation and peptide loading. At least in chicken, such MHCIa haplotypes of MHCIa, TAP2 and Tapasin are shown to influence the repertoire of pathogen epitopes being presented to CD8+ T-cells with subsequent effect on cell-mediated immune responses. RESULTS: Examining MHCI haplotype variation in Atlantic salmon using transcriptome and genome resources we found little evidence for polymorphism in antigen processing genes closely linked to the classical MHCIa genes. Looking at other genes involved in MHCI assembly and antigen processing we found retention of functional gene duplicates originating from the second vertebrate genome duplication event providing cyprinids, salmonids, and neoteleosts with the potential of several different peptide-loading complexes. One of these gene duplications has also been retained in the tetrapod lineage with orthologs in frogs, birds and opossum. CONCLUSION: We postulate that the unique salmonid whole genome duplication (SGD) is responsible for eliminating haplotypic content in the paralog MHCIa regions possibly due to frequent recombination and reorganization events at early stages after the SGD. In return, multiple rounds of whole genome duplications has provided Atlantic salmon, other teleosts and even lower vertebrates with alternative peptide loading complexes. How this affects antigen presentation remains to be established.


Assuntos
Peixes/genética , Duplicação Gênica , Genoma , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/genética , Genes MHC Classe I , Haplótipos/genética , Peptídeos/genética , Filogenia , Polimorfismo Genético , Especificidade da Espécie
14.
Immunogenetics ; 70(7): 459-476, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29270774

RESUMO

Humans have a number of nonclassical major histocompatibility complex (MHC) class I molecules that are quite divergent from the classical ones, and that may have separated from the classical lineage in pre-mammalian times. To estimate when in evolution the respective nonclassical lineages separated from the classical lineage, we first identified "phylogenetic marker motifs" within the evolution of classical MHC class I; the selected motifs are rather specific for and rather stably inherited within clades of species. Distribution of these motifs in nonclassical MHC class I molecules indicates that the lineage including the nonclassical MHC class I molecules CD1 and PROCR separated from the classical lineage before the emergence of tetrapod species, and that the human nonclassical MHC class I molecules FCGRT, MIC/ULBP/RAET, HFE, MR1, and ZAG show similarity with classical MHC class I at the avian/reptilian level. An MR1-like α1 exon sequence was identified in turtle. Our system furthermore indicates that the lineage UT, hitherto only found in non-eutherian mammals, predates tetrapod existence, and we identified UT genes in reptiles. If only accepting wide distribution of a lineage among extant species as true evidence for ancientness, the oldest identified nonclassical MHC class I lineage remains the fish-specific lineage Z, which was corroborated in the present study by finding both Z and classical-type MHC class I sequences in a primitive fish, the bichir. In short, we gained important new insights into the evolution of classical MHC class I motifs and the probable time of origin of nonclassical MHC class I lineages.


Assuntos
Genes MHC Classe I/genética , Antígenos de Histocompatibilidade Classe I/genética , Sequência de Aminoácidos , Animais , Antígenos CD1/genética , Antígenos CD1/imunologia , Sequência de Bases , Sequência Conservada , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/imunologia , Evolução Molecular , Genes MHC Classe I/imunologia , Humanos , Mamíferos/genética , Filogenia , Répteis/genética
16.
Dev Comp Immunol ; 75: 38-47, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28223254

RESUMO

High throughput sequencing (HTS) is useful for many purposes as exemplified by the other topics included in this special issue. The purpose of this paper is to look into the unique challenges of using this technology in non-model organisms where resources such as genomes, functional genome annotations or genome complexity provide obstacles not met in model organisms. To describe these challenges, we narrow our scope to RNA sequencing used to study differential gene expression in response to pathogen challenge. As a demonstration species we chose Atlantic salmon, which has a sequenced genome with poor annotation and an added complexity due to many duplicated genes. We find that our RNA-seq analysis pipeline deciphers between duplicates despite high sequence identity. However, annotation issues provide problems in linking differentially expressed genes to pathways. Also, comparing results between approaches and species are complicated due to lack of standardized annotation.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunidade Inata , Salmonidae/genética , Transdução de Sinais , Animais , Bases de Dados como Assunto , Perfilação da Expressão Gênica , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Anotação de Sequência Molecular , Padrões de Referência , Salmonidae/imunologia
17.
Nucleic Acids Res ; 45(D1): D860-D864, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899604

RESUMO

The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Complexo Principal de Histocompatibilidade/genética , Animais , Complexo Principal de Histocompatibilidade/imunologia , Software , Navegador
18.
Nature ; 533(7602): 200-5, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088604

RESUMO

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Assuntos
Diploide , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Genoma/genética , Salmo salar/genética , Animais , Elementos de DNA Transponíveis/genética , Feminino , Genômica , Masculino , Modelos Genéticos , Mutagênese/genética , Filogenia , Padrões de Referência , Salmo salar/classificação , Homologia de Sequência
19.
Biology (Basel) ; 5(1)2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797646

RESUMO

Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.

20.
BMC Evol Biol ; 15: 32, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25888517

RESUMO

BACKGROUND: MHC class I (MHCI) molecules are the key presenters of peptides generated through the intracellular pathway to CD8-positive T-cells. In fish, MHCI genes were first identified in the early 1990's, but we still know little about their functional relevance. The expansion and presumed sub-functionalization of cod MHCI and access to many published fish genome sequences provide us with the incentive to undertake a comprehensive study of deduced teleost fish MHCI molecules. RESULTS: We expand the known MHCI lineages in teleosts to five with identification of a new lineage defined as P. The two lineages U and Z, which both include presumed peptide binding classical/typical molecules besides more derived molecules, are present in all teleosts analyzed. The U lineage displays two modes of evolution, most pronouncedly observed in classical-type alpha 1 domains; cod and stickleback have expanded on one of at least eight ancient alpha 1 domain lineages as opposed to many other teleosts that preserved a number of these ancient lineages. The Z lineage comes in a typical format present in all analyzed ray-finned fish species as well as lungfish. The typical Z format displays an unprecedented conservation of almost all 37 residues predicted to make up the peptide binding groove. However, also co-existing atypical Z sub-lineage molecules, which lost the presumed peptide binding motif, are found in some fish like carps and cavefish. The remaining three lineages, L, S and P, are not predicted to bind peptides and are lost in some species. CONCLUSIONS: Much like tetrapods, teleosts have polymorphic classical peptide binding MHCI molecules, a number of classical-similar non-classical MHCI molecules, and some members of more diverged MHCI lineages. Different from tetrapods, however, is that in some teleosts the classical MHCI polymorphism incorporates multiple ancient MHCI domain lineages. Also different from tetrapods is that teleosts have typical Z molecules, in which the residues that presumably form the peptide binding groove have been almost completely conserved for over 400 million years. The reasons for the uniquely teleost evolution modes of peptide binding MHCI molecules remain an enigma.


Assuntos
Peixes/genética , Genes MHC Classe I , Animais , Peixes/classificação , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...