Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(1): 116-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709540

RESUMO

We sequenced the mitochondrial genome of the Western green lizard (Lacerta bilineata) using Illumina technology and additional Sanger sequencing. The assembled 17 086 bp mitogenome had a GC content of 40.32% and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region (CR), with a gene order identical to the chordate consensus. In addition, we re-sequenced the mitogenome of the closely related Eastern green lizard L. viridis using the same techniques as for L. bilineata. The mitogenomes of L. bilineata and L. viridis showed a sequence identity of 94.4% and 99.9%, respectively, relative to the previously published L. viridis mitogenome. The phylogenetic reconstruction based on 17 Lacertinae mitogenomes using Anolis carolinensis as the outgroup supported L. bilineata and its sister species L. viridis as distinct lineages.


Assuntos
Genes Mitocondriais , Genoma Mitocondrial , Lagartos/genética , Filogenia , Animais , Composição de Bases , Sequência de Bases , DNA Mitocondrial , Feminino , Ordem dos Genes , Tamanho do Genoma , Genômica , Análise de Sequência de DNA
2.
Ecol Evol ; 5(23): 5722-34, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27069620

RESUMO

Following over 20 years of research on the climatic effects on biodiversity we now have strong evidence that climate change affects phenology, fitness, and distribution ranges of different taxa, including birds. Bird phenology likely responds to changes in local weather. It is also affected by climatic year-to-year variations on larger scales. Although such scale-related effects are common in ecology, most studies analyzing the effects of climate change were accomplished using climatic information on a single spatial scale. In this study, we aimed at determining the scale-dependent sensitivity of breeding phenology and success to climate change in a migratory passerine bird, the barn swallow (Hirundo rustica). For both annual broods, we investigated effects of local weather (local scale) and the North Atlantic Oscillation (NAO, large scale) on the timing of breeding and breeding success. Consistent with previous studies in migratory birds we found that barn swallows in Eastern Germany bred progressively earlier. At the same time, they showed reduced breeding success over time in response to recent climatic changes. Responses to climatic variation were observed on both local and large climatic scales, but they differed with respect to the ecological process considered. Specifically, we found that the timing of breeding was primarily influenced by large-scale NAO variations and to a lesser extent by local weather on the breeding grounds. Conversely, climatic conditions on the local scale affected breeding success, exclusively. The observed decrease in breeding success over years is likely a consequence of scale-related mismatches between climatic conditions during different breeding phases. This provides further evidence that a species' response of earlier breeding may not be enough to cope with climate change. Our results emphasize the importance of considering the response of ecological processes along different climatic scales in order to better understand the complexity of climate change effects on biodiversity.

3.
PLoS One ; 9(6): e98840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24896260

RESUMO

Reliable estimates of population size are fundamental in many ecological studies and biodiversity conservation. Selecting appropriate methods to estimate abundance is often very difficult, especially if data are scarce. Most studies concerning the reliability of different estimators used simulation data based on assumptions about capture variability that do not necessarily reflect conditions in natural populations. Here, we used data from an intensively studied closed population of the arboreal gecko Gehyra variegata to construct reference population sizes for assessing twelve different population size estimators in terms of bias, precision, accuracy, and their 95%-confidence intervals. Two of the reference populations reflect natural biological entities, whereas the other reference populations reflect artificial subsets of the population. Since individual heterogeneity was assumed, we tested modifications of the Lincoln-Petersen estimator, a set of models in programs MARK and CARE-2, and a truncated geometric distribution. Ranking of methods was similar across criteria. Models accounting for individual heterogeneity performed best in all assessment criteria. For populations from heterogeneous habitats without obvious covariates explaining individual heterogeneity, we recommend using the moment estimator or the interpolated jackknife estimator (both implemented in CAPTURE/MARK). If data for capture frequencies are substantial, we recommend the sample coverage or the estimating equation (both models implemented in CARE-2). Depending on the distribution of catchabilities, our proposed multiple Lincoln-Petersen and a truncated geometric distribution obtained comparably good results. The former usually resulted in a minimum population size and the latter can be recommended when there is a long tail of low capture probabilities. Models with covariates and mixture models performed poorly. Our approach identified suitable methods and extended options to evaluate the performance of mark-recapture population size estimators under field conditions, which is essential for selecting an appropriate method and obtaining reliable results in ecology and conservation biology, and thus for sound management.


Assuntos
Ecologia/métodos , Modelos Teóricos , Densidade Demográfica , Conjuntos de Dados como Assunto , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...