Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555176

RESUMO

Administration of systemic retinoids such as acitretin has not been approved yet for pediatric patients. An adverse event of retinoid-therapy that occurs with lower prevalence in children than in adults is hyperlipidemia. This might be based on the lack of comorbidities in young patients, but must not be neglected. Especially for the development of the human brain up to young adulthood, dysbalance of lipids might be deleterious. Here, we provide for the first time an in-depth analysis of the influence of subchronic acitretin-administration on lipid composition of brain parenchyma of young wild type mice. For comparison and to evaluate the systemic effect of the treatment, liver lipids were analogously investigated. As expected, triglycerides increased in liver as well as in brain and a non-significant increase in cholesterol was observed. However, specifically brain showed an increase in lyso-phosphatidylcholine and carnitine as well as in sphingomyelin. Group analysis of lipid classes revealed no statistical effects, while single species were tissue-dependently changed: effects in brain were in general more subtly as compared to those in liver regarding the mere number of changed lipid species. Thus, while the overall impact of acitretin seems comparably small regarding brain, the change in individual species and their role in brain development and maturation has to be considered.


Assuntos
Acitretina , Hiperlipidemias , Adulto , Humanos , Criança , Adolescente , Animais , Camundongos , Adulto Jovem , Acitretina/farmacologia , Acitretina/uso terapêutico , Lipidômica , Hiperlipidemias/induzido quimicamente , Colesterol , Encéfalo
2.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831163

RESUMO

The accumulation of amyloid ß-protein (Aß) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aß degradation, which, in addition to Aß production, is critical for Aß homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aß degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos/metabolismo , Insulisina/metabolismo , Proteólise , Animais , Biocatálise , Linhagem Celular , Camundongos Endogâmicos C57BL , Modelos Biológicos
3.
Sci Rep ; 11(1): 15301, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315969

RESUMO

Alzheimer's disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-ß (Aß). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aß-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.


Assuntos
Acitretina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Modelos Animais de Doenças , Lipidômica , Fígado/metabolismo , Modelos Biológicos , Doença de Alzheimer/metabolismo , Animais , Camundongos
4.
Nutrients ; 13(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671099

RESUMO

Methylxanthines (MTX) are purine derived xanthine derivatives. Whereas naturally occurring methylxanthines like caffeine, theophylline or theobromine are widely consumed in food, several synthetic but also non-synthetic methylxanthines are used as pharmaceuticals, in particular in treating airway constrictions. Besides the well-established bronchoprotective effects, methylxanthines are also known to have anti-inflammatory and anti-oxidative properties, mediate changes in lipid homeostasis and have neuroprotective effects. Known molecular mechanisms include adenosine receptor antagonism, phosphodiesterase inhibition, effects on the cholinergic system, wnt signaling, histone deacetylase activation and gene regulation. By affecting several pathways associated with neurodegenerative diseases via different pleiotropic mechanisms and due to its moderate side effects, intake of methylxanthines have been suggested to be an interesting approach in dealing with neurodegeneration. Especially in the past years, the impact of methylxanthines in neurodegenerative diseases has been extensively studied and several new aspects have been elucidated. In this review we summarize the findings of methylxanthines linked to Alzheimer´s disease, Parkinson's disease and Multiple Sclerosis since 2017, focusing on epidemiological and clinical studies and addressing the underlying molecular mechanisms in cell culture experiments and animal studies in order to assess the neuroprotective potential of methylxanthines in these diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Xantinas/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/epidemiologia , Animais , Cafeína/administração & dosagem , Café/química , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/epidemiologia , Teobromina/administração & dosagem , Teofilina/administração & dosagem
5.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260941

RESUMO

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer's disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines-caffeine, theophylline and theobromine-and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.


Assuntos
Doença de Alzheimer/genética , Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Xantinas/farmacologia , Linhagem Celular Tumoral , Genes Essenciais , Humanos , Pentoxifilina/farmacologia , Análise de Componente Principal , Teobromina/farmacologia , Teofilina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Xantinas/química
6.
Aging Cell ; 19(11): e13264, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128835

RESUMO

One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-ß (Aß) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aß-production and -degradation is necessary to prevent pathological Aß-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aß-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aß-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aß-production caused by APP or Presenilin deficiency, IDE-mediated Aß-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aß-production and Aß-degradation forming a regulatory cycle in which AICD promotes Aß-degradation via IDE and IDE itself limits its own production by degrading AICD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Insulisina/metabolismo , Doença de Alzheimer/patologia , Humanos , Transdução de Sinais
7.
Sci Rep ; 10(1): 9164, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514053

RESUMO

The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-ß (Aß), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aß-production and reduced Aß-degradation, leading to increased Aß-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased ß-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aß-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aß-degrading-enzymes. Regarding Aß-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aß-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Capsaicina/efeitos adversos , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Contraindicações de Medicamentos , Expressão Gênica , Humanos , Neuroblastoma
8.
J Nutr Biochem ; 67: 123-137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889441

RESUMO

A vast majority of the elderly population shows a mild to moderate vitamin D deficiency. Besides the well-known function of vitamin D, vitamin D receptor is also expressed in brain and is discussed to regulate several genes. However very little is known whether genes are regulated, associated with Alzheimer's disease (AD). Here we investigate 117 genes, known to be affected in AD, in mouse brain samples with a mild vitamin D hypovitaminosis comparable to the vitamin D status of the elderly population (20%-30% deficiency). The 117 genes include two positive controls, Nep and Park7, already known to be affected by both AD and vitamin D hypovitaminosis. The 25 most promising candidates were verified in a second independent mouse cohort, resulting in eleven genes further evaluated against three additional housekeeping genes. Three of the remaining eight significantly altered genes are involved in APP homeostasis (Snca, Nep, Psmb5), and each one gene in oxidative stress (Park7), inflammation (Casp4), lipid metabolism (Abca1), signal transduction (Gnb5) and neurogenesis (Plat). Our results tighten the link of vitamin D and AD and underline that vitamin D influences several genes also in brain, highlighting that a strong link not only to AD but also to other neurodegenerative diseases might exist.


Assuntos
Doença de Alzheimer/genética , Encéfalo/fisiologia , Deficiência de Vitamina D/genética , Animais , Feminino , Perfilação da Expressão Gênica , Inflamação/genética , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Deficiência de Vitamina D/etiologia
9.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257109

RESUMO

Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-ß (Aß), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aß-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D2 and D3 analogues decreased Aß-production and increased Aß-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aß-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased ß-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/tratamento farmacológico , Proteólise , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologia
10.
Front Mol Neurosci ; 10: 63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344547

RESUMO

Extracellular neuritic plaques, composed of aggregated amyloid-ß (Aß) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aß generation. In line with these observations, protective lipids being able to decrease Aß generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aß peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretase. The α-secretase appears to compete with ß-secretase for the initial cleavage of APP, preventing Aß production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aß generation. Beside the pathological impact of Aß, accumulating evidence suggests that Aß and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aß and AICD in the regulation of several lipid metabolism pathways.

11.
Int J Mol Sci ; 17(11)2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27801864

RESUMO

One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol and cholesterol esters, which have been shown to be risk factors in AD, were decreased. Besides the unambiguous positive effects of tocotrienol, amyloid-ß (Aß) levels were increased accompanied by an increase in the activity of enzymes responsible for Aß production. Proteins and gene expression of the secretases and their components remained unchanged, whereas tocotrienol accelerates enzyme activity in cell-free assays. Besides enhanced Aß production, tocotrienols inhibited Aß degradation in neuro 2a (N2a)-cells. Our results might help to understand the controversial findings of vitamin E studies and demonstrate that besides the known positive neuroprotective properties, tocotrienols also have negative characteristics with respect to AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Neuroblastoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/biossíntese , Antioxidantes/administração & dosagem , Linhagem Celular , Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Tocotrienóis/administração & dosagem , Vitamina E/administração & dosagem
12.
Biochem Cell Biol ; 94(6): 534-542, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27813426

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-ß (Aß) peptides as extracellular senile plaques in the brain. Total Aß levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aß-clearance mechanisms, including Aß-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aß-degradation by affecting insulin-degrading enzyme (IDE), the major Aß-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aß-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aß production, EPA and DHA might ameliorate AD pathology by increasing Aß turnover.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Insulisina/genética , Neuroblastoma/metabolismo , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Insulisina/metabolismo , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
13.
Neurodegener Dis ; 16(1-2): 44-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26642316

RESUMO

One of the main characteristics of Alzheimer's disease (AD) is the ß-amyloid peptide (Aß) generated by ß- and γ-secretase processing of the amyloid precursor protein (APP). Previously it has been demonstrated that polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are associated with a reduced risk of AD caused by decreased Aß production. However, in epidemiological studies and nutritional approaches, the outcomes of DHA-dependent treatment were partially controversial. PUFAs are very susceptible to reactive oxygen species and lipid peroxidation, which are increased during disease pathology. In line with published results, lipid peroxidation was elevated in human postmortem AD brains; especially 4-hydroxy-nonenal (HNE) was increased. To investigate whether lipid peroxidation is only a consequence or might also influence the processes leading to AD, we analyzed 7 different oxidized lipid species including 5 oxidized DHA derivatives and the lipid peroxidation products of ω-3 and ω-6 PUFAs, HNE and 4-hydroxy-hexenal, in human neuroblastoma cells and mouse mixed cortical neurons. In the presence of oxidized lipids Aß and soluble ß-secreted APP levels were elevated, whereas soluble α-secreted APP was decreased, suggesting a shift from the nonamyloidogenic to the amyloidogenic pathway of APP processing. Furthermore, ß- and γ-secretase activity was increased by oxidized lipids via increased gene expression and additionally by a direct effect on ß-secretase activity. Importantly, only 1% oxidized DHA was sufficient to revert the protective effect of DHA and to significantly increase Aß production. Therefore, our results emphasize the need to prevent DHA from oxidation in nutritional approaches and might help explain the divergent results of clinical DHA studies.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Peroxidação de Lipídeos , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Bancos de Tecidos
14.
Front Aging Neurosci ; 7: 77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074811

RESUMO

Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-ß (Aß), released by sequential proteolytic processing of the amyloid precursor protein (APP) by ß - and γ-secretase. Aß peptides can aggregate, leading to toxic Aß oligomers and amyloid plaque formation. Aß accumulation is not only dependent on de novo synthesis but also on Aß degradation. Neprilysin (NEP) is one of the major enzymes involved in Aß degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aß-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the treatment of AD.

15.
Cell Physiol Biochem ; 34(1): 92-110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24977484

RESUMO

BACKGROUND: Gangliosides were found to be associated with Alzheimer's disease (AD). Here we addressed a potential function of γ-secretase (presenilin) dependent cleavage of the amyloid-precursor-protein (APP) in the regulation of ganglioside de novo synthesis. METHODS: To identify a potential role of γ-secretase and APP in ganglioside de novo synthesis we used presenilin (PS) deficient and APP deficient cells and mouse brains, mutated PS as well as transgenic mice and AD post mortem brains. Changes in glucosylceramide synthase (GCS) activity were identified by incorporation of radiolabeled UDP-glucose in glucosylceramide, changes in gene expression via real-time PCR and Western blot analysis. Alterations in ganglioside levels were determined by thin layer chromatography and mass spectrometry. RESULTS: We found that PS and APP deficiency, in vitro and in vivo, resulted in increased GCS gene expression, elevated enzyme activity and thus increased glucosylceramide and total ganglioside level. Using a specific γ-secretase inhibitor revealed that PS proteolytic activity alters ganglioside homeostasis. By the use of mutated PS causing early onset AD in cell culture and transgenic mice we found that GCS is increased in AD, further substantiated by the use of AD post mortem brains, suffering from sporadic AD. CONCLUSION: APP processing regulates ganglioside de novo synthesis and is affected in AD.


Assuntos
Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , Glucosiltransferases/metabolismo , Presenilinas/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Feminino , Gangliosídeos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Presenilinas/deficiência , Presenilinas/genética , Transfecção
16.
Neurodegener Dis ; 13(2-3): 75-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24192346

RESUMO

Ninety percent of the elderly population has a vitamin D hypovitaminosis, and several lines of evidence suggest that there might be a potential causal link between Alzheimer's disease (AD) and a non-sufficient supply with vitamin D. However, the mechanisms linking AD to vitamin D have not been completely understood. The aim of our study is to elucidate the impact of 25(OH) vitamin D3 on amyloid precursor protein processing in mice and N2A cells utilizing very moderate and physiological vitamin D hypovitaminosis in the range of 20-30% compared to wild-type mice. We found that already under such mild conditions, amyloid-ß peptide (Aß) is significantly increased, which is caused by an increased ß-secretase activity and BACE1 protein level. Additionally, neprilysin (NEP) expression is downregulated resulting in a decreased NEP activity further enhancing the effect of decreased vitamin D on the Aß level. In line with the in vivo findings, corresponding effects were found with N2A cells supplemented with 25(OH) vitamin D3. Our results further strengthen the link between AD and vitamin D3 and suggest that supplementation of vitamin D3 might have a beneficial effect in AD prevention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colecalciferol/metabolismo , Deficiência de Vitamina D/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deficiência de Vitamina D/complicações
17.
J Neurosci ; 33(41): 16072-87, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107941

RESUMO

Amyloid-ß (Aß), major constituent of senile plaques in Alzheimer's disease (AD), is generated by proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretase. Several lipids, especially cholesterol, are associated with AD. Phytosterols are naturally occurring cholesterol plant equivalents, recently been shown to cross the blood-brain-barrier accumulating in brain. Here, we investigated the effect of the most nutritional prevalent phytosterols and cholesterol on APP processing. In general, phytosterols are less amyloidogenic than cholesterol. However, only one phytosterol, stigmasterol, reduced Aß generation by (1) directly decreasing ß-secretase activity, (2) reducing expression of all γ-secretase components, (3) reducing cholesterol and presenilin distribution in lipid rafts implicated in amyloidogenic APP cleavage, and by (4) decreasing BACE1 internalization to endosomal compartments, involved in APP ß-secretase cleavage. Mice fed with stigmasterol-enriched diets confirmed protective effects in vivo, suggesting that dietary intake of phytosterol blends mainly containing stigmasterol might be beneficial in preventing AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Fitosteróis/farmacologia , Animais , Western Blotting , Química Encefálica , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Ionização de Chama , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fitosteróis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estigmasterol/farmacologia
18.
Int J Mol Sci ; 14(3): 5879-98, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23485990

RESUMO

Alzheimer's disease (AD) is characterized by extracellular accumulation of amyloid-ß peptide (Aß), generated by proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretase. Aß generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aß domain. Therefore, an increase in α-secretase activity is an attractive therapeutic target for AD treatment. APP and the APP-cleaving secretases are all transmembrane proteins, thus local membrane lipid composition is proposed to influence APP processing. Although several studies have focused on γ-secretase, the effect of the membrane lipid microenvironment on α-secretase is poorly understood. In the present study, we systematically investigated the effect of fatty acid (FA) acyl chain length (10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, 24:0), membrane polar lipid headgroup (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine), saturation grade and the FA double-bond position on α-secretase activity. We found that α-secretase activity is significantly elevated in the presence of FAs with short chain length and in the presence of polyunsaturated FAs, whereas variations in the phospholipid headgroups, as well as the double-bond position, have little or no effect on α-secretase activity. Overall, our study shows that local lipid membrane composition can influence α-secretase activity and might have beneficial effects for AD.

19.
Biomed Res Int ; 2013: 814390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24575399

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40-42 amino acid long peptides termed ß -amyloid (A ß ). A ß is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and A ß production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and A ß generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Metabolismo dos Lipídeos/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Camundongos , Sinapses/metabolismo , Sinapses/patologia
20.
ScientificWorldJournal ; 2012: 141240, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22547976

RESUMO

Lipids play an important role as risk or protective factors in Alzheimer's disease (AD). Previously it has been shown that plasmalogens, the major brain phospholipids, are altered in AD. However, it remained unclear whether plasmalogens themselves are able to modulate amyloid precursor protein (APP) processing or if the reduced plasmalogen level is a consequence of AD. Here we identify the plasmalogens which are altered in human AD postmortem brains and investigate their impact on APP processing resulting in Aß production. All tested plasmalogen species showed a reduction in γ-secretase activity whereas ß- and α-secretase activity mainly remained unchanged. Plasmalogens directly affected γ-secretase activity, protein and RNA level of the secretases were unaffected, pointing towards a direct influence of plasmalogens on γ-secretase activity. Plasmalogens were also able to decrease γ-secretase activity in human postmortem AD brains emphasizing the impact of plasmalogens in AD. In summary our findings show that decreased plasmalogen levels are not only a consequence of AD but that plasmalogens also decrease APP processing by directly affecting γ-secretase activity, resulting in a vicious cycle: Aß reduces plasmalogen levels and reduced plasmalogen levels directly increase γ-secretase activity leading to an even stronger production of Aß peptides.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Plasmalogênios/fisiologia , Processamento de Proteína Pós-Traducional , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Encéfalo/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...