Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41046-41058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842783

RESUMO

Organic UV filters are emerging contaminants in personal care products such as sunscreens. The toxicity of numerous of these UV filter compounds has been demonstrated in several marine taxa. However, whilst the biological impact has already been largely demonstrated, the anthropogenic drivers leading to UV filter contamination still need to be identified. In this work, a survey was conducted on a site of the French Atlantic Coast (i) to describe beachgoers' behaviours (sunscreen use and beach frequentation), (ii) provide an estimation of the UV filters released at sea and (iii) highlight the effect of air temperature on these behaviours and on the release of UV filters. In parallel with these estimations of the UV filters released at sea, in situ chemical measurements were performed. By comparing the results of both approaches, this interdisciplinary work provides an insight of how the observations of beachgoers' behaviour modulations and attendance level fluctuations could be used to prevent UV filter contaminations and ultimately manage the ecotoxicological risk.


Assuntos
Praias , Protetores Solares , Temperatura , França , Recreação , Monitoramento Ambiental , Humanos , Raios Ultravioleta
2.
Mar Environ Res ; 196: 106418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402777

RESUMO

Marine heatwaves (MHW) threaten marine organisms and tend to increase in frequency and intensity. We exposed the blue mussel Mytilus edulis to a MHW lasting 23 days, including two 10-d periods of thermal intensity increase of +5 °C (20 °C-25 °C) interspersed by 1 day back to 20 °C, followed by a 4-d recovery period. We investigated behaviour responses of mussels and gene expression changes relative to the circadian rhythm (Per), oxidative stress (SOD), cellular apoptosis (CASP3), energy production (ATPs), and general stress response (hsp70). Results showed that the MHW disturbed the valve activity of mussels. Particularly, mussels increased the number of valve micro-closures, showing a stressful state of organisms. Mussels also decreased Per, CASP3, ATPs, and Hsp70 gene expression. Some behavioural and molecular effects persisted after the MHW, suggesting a limited recovery capacity of individuals. This work highlighted the vulnerability of M. edulis to a realistic MHW.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Humanos , Animais , Caspase 3 , Mytilus edulis/fisiologia , Organismos Aquáticos , Estresse Oxidativo , Alimentos Marinhos , Mytilus/fisiologia
3.
Mar Pollut Bull ; 194(Pt B): 115245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517278

RESUMO

There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few µg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few µg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.


Assuntos
Protetores Solares , Poluentes Químicos da Água , Animais , Protetores Solares/toxicidade , Aprendizagem da Esquiva , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo
4.
Sci Total Environ ; 863: 160844, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528094

RESUMO

Marine heatwaves (MHWs) are becoming more frequent and intense due to climate change and have strong negative effects on ecosystem. Few studies have reproduced the complex nature of temperature changes of a MHW, while it is suggested that ectotherms may be more vulnerable to rapid changes such as during MHWs. Effects of an experimental MHW were investigated in the golden grey mullet Chelon auratus. Juveniles acclimated to 20 °C were exposed to a rapid 5 °C increase in temperature, followed by a five-day period at 25 °C, before quickly returning to 20°C. Metabolic variables (SMR-standard, MMR-maximum rate, AS-aerobic scope, EPOC-excess post­oxygen consumption) and critical swimming speed (Ucrit) were measured at different phases of this MHW and after a thermally stable recovery phase. Although the pattern was only significant for the SMR, the aerobic three variables describing aerobic metabolism (SMR, MMR and AS) immediately increased in fish exposed to the acute elevation of temperature, and remained elevated when fish stayed at 25 °C for five days. A similar increase of these metabolic variables was observed for fish that were progressively acclimated to 25 °C. This suggests that temperature increases contribute to increases in metabolism; however, the acute nature of the MHW had no influence. At the end of the MHW, the SMR remained elevated, suggesting an additional cost of obligatory activities due to the extreme event. In parallel, Ucrit did not vary regardless of the thermal conditions. Concerning EPOC, it significantly increased only when fish were acutely exposed to 25 °C. This strongly suggests that fish may buffer the effects of acute changes in temperature by shifting to anaerobic metabolism. Globally, this species appears able to cope with this MHW, but that's without taking into consideration future projections describing an increase in both intensity and frequency of such events, as well as other stressors like pollution or hypoxia.


Assuntos
Ecossistema , Smegmamorpha , Animais , Anaerobiose , Temperatura , Peixes , Metabolismo Energético
5.
Sci Rep ; 9(1): 19441, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857637

RESUMO

The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Foraminíferos/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Foraminíferos/fisiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Poliestirenos/toxicidade , Água do Mar/química , Água do Mar/microbiologia , Dióxido de Silício/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...