Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535661

RESUMO

For assistive devices such as active orthoses, exoskeletons or other close-to-body robotic-systems, the immediate prediction of biological limb movements based on biosignals in the respective control system can be used to enable intuitive operation also by untrained users e.g. in healthcare, rehabilitation or industrial scenarios. Surface electromyography (sEMG) signals from the muscles that drive the limbs can be measured before the actual movement occurs and, hence, can be used as source for predicting limb movements. The aim of this work was to create a model that can be adapted to a new user or movement scenario with little measurement and computing effort. Therefore, a biomechanical model is presented that predicts limb movements of the human forearm based on easy to measure sEMG signals of the main muscles involved in forearm actuation (lateral and long head of triceps and short and long head of biceps). The model has 42 internal parameters of which 37 were attributed to 8 individually measured physiological measures (location of acromion at the shoulder, medial/lateral epicondyles as well as olecranon at the elbow, and styloid processes of radius/ulna at the wrist; maximum muscle forces of biceps and triceps). The remaining 5 parameters are adapted to specific movement conditions in an optimization process. The model was tested in an experimental study with 31 subjects in which the prediction quality of the model was assessed. The quality of the movement prediction was evaluated by using the normalized mean absolute error (nMAE) for two arm postures (lower, upper), two load conditions (2 kg, 4 kg) and two movement velocities (slow, fast). For the resulting 8 experimental combinations the nMAE varied between nMAE = 0.16 and nMAE = 0.21 (lower numbers better). An additional quality score (QS) was introduced that allows direct comparison between different movements. This score ranged from QS = 0.25 to QS = 0.40 (higher numbers better) for the experimental combinations. The above formulated aim was achieved with good prediction quality by using only 8 individual measurements (easy to collect body dimensions) and the subsequent optimization of only 5 parameters. At the same time, just easily accessible sEMG measurement locations are used to enable simple integration, e.g. in exoskeletons. This biomechanical model does not compete with models that measure all sEMG signals of the muscle heads involved in order to achieve the highest possible prediction quality.


Assuntos
Antebraço , Extremidade Superior , Humanos , Eletromiografia/métodos , Antebraço/fisiologia , Músculo Esquelético/fisiologia , Movimento/fisiologia
2.
PLoS One ; 17(10): e0275128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201491

RESUMO

Tendons consist of passive soft tissue with non linear material properties. They play a key role in force transmission from muscle to skeletal structure. The properties of tendons have been extensively examined in vitro. In this work, a non linear model of the distal biceps brachii tendon was parameterized based on measurements of myotendinous junction displacements in vivo at different load forces and elbow angles. The myotendinous junction displacement was extracted from ultrasound B-mode images within an experimental setup which also allowed for the retrieval of the exerted load forces as well as the elbow joint angles. To quantify the myotendinous junction movement based on visual features from ultrasound images, a manual and an automatic method were developed. The performance of both methods was compared. By means of exemplary data from three subjects, reliable fits of the tendon model were achieved. Further, different aspects of the non linear tendon model generated in this way could be reconciled with individual experiments from literature.


Assuntos
Articulação do Cotovelo , Cotovelo/diagnóstico por imagem , Articulação do Cotovelo/diagnóstico por imagem , Articulação do Cotovelo/fisiologia , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Ultrassonografia/métodos
3.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443548

RESUMO

Caffeine is known to influence the absorbance spectrum of anthocyanin dyes. Such dyes are often used as sensitizers in dye-sensitized solar cells (DSSCs). Natural dyes, like anthocyanins, yield only small DSSC efficiencies, but are of high interest since they are usually non-toxic and inexpensive. Here we report on the influence of copigmentation of anthocyanins, taken from commercially available tea, with caffeine. In this way, the efficiencies were increased for measurements with a solar simulator as well as with ambient light. In addition, the well-known pH dependence of the efficiency of DSSCs dyed with anthocyanins was shifted-while a pH value of 1-2 was ideal for pure anthocyanins used as dyes, a higher pH value of 2-3 was sufficient to reach the maximum efficiencies for caffeine-copigmented dyes. This means that instead of reducing the pH value by adding an acid, adding caffeine can also be used to increase the efficiency of DSSCs prepared with anthocyanins. Finally, a comparison of several literature sources dealing with anthocyanin-based DSSCs allows for evaluation of our results with respect to the work of other groups.

4.
Materials (Basel) ; 10(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048347

RESUMO

Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...