Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631822

RESUMO

Process-induced changes in the morphology of biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends modified with various multifunctional chain-extending cross-linkers (CECLs) are presented. The morphology of unmodified and modified films produced with blown film extrusion is examined in an extrusion direction (ED) and a transverse direction (TD). While FTIR analysis showed only small peak shifts indicating that the CECLs modify the molecular weight of the PBAT/PLA blend, SEM investigations of the fracture surfaces of blown extrusion films revealed their significant effect on the morphology formed during the processing. Due to the combined shear and elongation deformation during blown film extrusion, rather spherical PLA islands were partly transformed into long fibrils, which tended to decay to chains of elliptical islands if cooled slowly. The CECL introduction into the blend changed the thickness of the PLA fibrils, modified the interface adhesion, and altered the deformation behavior of the PBAT matrix from brittle to ductile. The results proved that CECLs react selectively with PBAT, PLA, and their interface. Furthermore, the reactions of CECLs with PBAT/PLA induced by the processing depended on the deformation directions (ED and TD), thus resulting in further non-uniformities of blown extrusion films.

2.
Talanta ; 232: 122431, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074417

RESUMO

The analysis of used engine oils from industrial engines enables the study of engine wear and oil degradation in order to evaluate the necessity of oil changes. As the matrix composition of an engine oil strongly depends on its intended application, meaningful diagnostic oil analyses bear considerable challenges. Owing to the broad spectrum of available oil matrices, we have evaluated the applicability of using an internal standard and/or preceding sample digestion for elemental analysis of used engine oils via inductively coupled plasma optical emission spectroscopy (ICP OES). Elements originating from both wear particles and additives as well as particle size influence could be clearly recognized by their distinct digestion behaviour. While a precise determination of most wear elements can be achieved in oily matrix, the measurement of additives is performed preferably after sample digestion. Considering a dataset of physicochemical parameters and elemental composition for several hundred used engine oils, we have further investigated the feasibility of predicting the identity and overall condition of an unknown combustion engine using the machine learning system XGBoost. A maximum accuracy of 89.6% in predicting the engine type was achieved, a mean error of less than 10% of the observed timeframe in predicting the oil running time and even less than 4% for the total engine running time, based purely on common oil check data. Furthermore, obstacles and possibilities to improve the performance of the machine learning models were analysed and the factors that enabled the prediction were explored with SHapley Additive exPlanation (SHAP). Our results demonstrate that both the identification of an unknown engine as well as a lifetime assessment can be performed for a first estimation of the actual sample without requiring meticulous documentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...