Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 228: 104891, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057752

RESUMO

Most drugs besides their intended activity, express undesired side effects, including those with the engagement of cell membrane. Previously, such undesired nonspecific effects on the membrane have been shown for a number of widely used nonsteroidal anti-inflammatory drugs. In this paper, we study the mechanism of interaction between moxifloxacin (Mox), antibacterial drug of broad specificity, with lipid bilayer of the liposomes of various compositions as a model of cell membrane using a combination of spectroscopy methods, including ATR-FTIR spectroscopy, circular dichroism, UV and fluorescence spectroscopy. The fine structure of the moxifloxacin-liposome complex, localization of the drug in bilayer and the main sites of Mox interaction with lipid membrane were determined. Lipid composition of the liposome plays a key role in the interaction with moxifloxacin, drastically affecting the loading efficiency, strength and character of drug binding, lipid phase segregation and phase transition parameters. In case of anionic liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and cardiolipin (CL2-) the electrostatic interaction of negatively charged nitrogen in heterocycle moiety of moxifloxacin with cardiolipin phosphate groups is a crucial factor for stable complex formation. The study of moxifloxacin-liposome complex behavior at phase transition in bilayer by DSC method revealed that in DPPC/CL2- liposomes system two microphases with different content of CL2- coexist and Mox interacts with both of these microphases resulting in the formation of two types of complexes with different structure and phase transition temperature. This binding stabilized the gel-state of the lipid bilayer with increasing the phase transition temperature Tm up to 3-5 °C. A different situation is observed for neutral DPPC liposomes: drug interaction with bilayer results in defects formation and a fluidization effect in lipid bilayer, resulted to decrease the Tm value by 2-4 °C. Moxifloxacin is not firmly binding in the membrane of DPPC and drug releases rapidly.


Assuntos
Antibacterianos/farmacologia , Bicamadas Lipídicas/química , Moxifloxacina/farmacologia , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Estrutura Molecular , Transição de Fase , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Anticancer Agents Med Chem ; 16(3): 335-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26416535

RESUMO

The phosphorus-containing glycerolipid based antitumor drugs (edelfosine as a prototype) are currently in clinical trials. To avoid the use of potentially harmful phosphoric reagents in the preparation of biologically active glycerolipids, and to obtain the compounds without the phosphoester bond cleavable inside the cells, we developed the synthesis of non-phosphorous glycerolipids (NPGLs) with neutral or cationic polar 'heads'. In this study, we analyzed the ability of novel NPGLs L1-L5 to interact with duplex DNA and interfere with the DNA modifying enzyme topoisomerase I (topo I). In cell-free systems, NPGLs formed highly affine complexes with DNA. Molecular docking revealed that NPGLs fitted very well into the DNA minor groove. Compounds L2 (with two long hydrophobic 'tails') and L4 (with ethylimidazolium cationic group), the most affine DNA binders, showed the best calculated energies of complex formation with DNA and topo I. The models demonstrated the binding of NPGLs to the topo I site known for interaction with conventional inhibitors. Each NPGL attenuated the topo I mediated unwinding of supercoiled DNA. Again, L2 and, to a lesser extent, L4 were the most potent topo I inhibitors. Thus, NPGLs with polar 'heads' emerge as a new class of DNA ligands and interfacial topo I antagonists.


Assuntos
Antineoplásicos/química , DNA Topoisomerases Tipo I/metabolismo , DNA/química , Simulação de Acoplamento Molecular , Éteres Fosfolipídicos/química , Inibidores da Topoisomerase I/química , Humanos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...