Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 128: 108631, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830453

RESUMO

Epidemiological evidence suggests the potential for air pollutants to induce male reproductive toxicity. In experimental studies, exposure to ozone during sensitive windows in the sperm lifecycle has been associated with impaired sperm motility. Subsequently, we sought to investigate the effects of episodic exposure to ozone during sperm maturation in the rat. Long-Evans rats were exposed to either filtered air or ozone (0.4 or 0.8 ppm) for five non-consecutive days over two weeks. Ozone exposure did not impact male reproductive organ weights or sperm motility ∼24 hours following the final exposure. Furthermore, circulating sex hormones remained unchanged despite increased T3 and T4 in the 0.8 ppm group. While there was indication of altered adrenergic signaling attributable to ozone exposure in the testis, there were minimal impacts on small non-coding RNAs detected in cauda sperm. Only two piwi-interacting RNAs (piRNAs) were altered in the mature sperm of ozone-exposed rats (piR-rno-346434 and piR-rno-227431). Data across all rats were next analyzed to identify any non-coding RNAs that may be correlated with reduced sperm motility. A total of 7 microRNAs (miRNAs), 8 RNA fragments, and 1682 piRNAs correlated well with sperm motility. Utilizing our exposure paradigm herein, we were unable to substantiate the relationship between ozone exposure during maturation with sperm motility. However, these approaches served to identify a suite of non-coding RNAs that were associated with sperm motility in rats. With additional investigation, these RNAs may prove to have functional roles in the acquisition of motility or be unique biomarkers for male reproductive toxicity.

2.
Toxicol Sci ; 198(1): 128-140, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38070162

RESUMO

Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.


Assuntos
Hipotireoidismo , MicroRNAs , Síndromes Neurotóxicas , Animais , Feminino , Masculino , Gravidez , Ratos , Encéfalo , Hipotireoidismo/induzido quimicamente , MicroRNAs/genética , Síndromes Neurotóxicas/etiologia , Hormônios Tireóideos , Tiroxina , Regulação para Cima
3.
Sci Total Environ ; 892: 164609, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37271399

RESUMO

Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Animais , Humanos , Masculino , Feminino , Adulto , Exposição Materna/efeitos adversos , Ratos Sprague-Dawley , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade
4.
Toxicol Lett ; 382: 22-32, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201588

RESUMO

Acrolein and trichloroethylene (TCE) are priority hazardous air pollutants due to environmental prevalence and adverse health effects; however, neuroendocrine stress-related systemic effects are not characterized. Comparing acrolein, an airway irritant, and TCE with low irritancy, we hypothesized that airway injury would be linked to neuroendocrine-mediated systemic alterations. Male and female Wistar-Kyoto rats were exposed nose-only to air, acrolein or TCE in incremental concentrations over 30 min, followed by 3.5-hr exposure to the highest concentration (acrolein - 0.0, 0.1, 0.316, 1, 3.16 ppm; TCE - 0.0, 3.16, 10, 31.6, 100 ppm). Real-time head-out plethysmography revealed acrolein decreased minute volume and increased inspiratory-time (males>females), while TCE reduced tidal-volume. Acrolein, but not TCE, inhalation increased nasal-lavage-fluid protein, lactate-dehydrogenase activity, and inflammatory cell influx (males>females). Neither acrolein nor TCE increased bronchoalveolar-lavage-fluid injury markers, although macrophages and neutrophils increased in acrolein-exposed males and females. Systemic neuroendocrine stress response assessment indicated acrolein, but not TCE, increased circulating adrenocorticotrophic hormone, and consequently corticosterone, and caused lymphopenia, but only in males. Acrolein also reduced circulating thyroid-stimulating hormone, prolactin, and testosterone in males. In conclusion, acute acrolein inhalation resulted in sex-specific upper respiratory irritation/inflammation and systemic neuroendocrine alterations linked to hypothalamic-pituitary-adrenal axes activation, which is critical in mediating extra-respiratory effects.


Assuntos
Tricloroetileno , Ratos , Animais , Masculino , Feminino , Tricloroetileno/toxicidade , Acroleína/toxicidade , Ratos Endogâmicos WKY , Sistema Respiratório , Administração por Inalação , Inflamação
5.
Front Endocrinol (Lausanne) ; 14: 1090081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843608

RESUMO

Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvß3 and isoforms of both thyroid receptors (TRα/TRß) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.


Assuntos
Hipotireoidismo , Tiroxina , Gravidez , Feminino , Ratos , Animais , Animais Recém-Nascidos , Tiroxina/metabolismo , Antitireóideos , Hormônios Tireóideos/metabolismo , Hipotireoidismo/metabolismo , Encéfalo/metabolismo , Junções Intercelulares/metabolismo
6.
Toxicol Sci ; 191(1): 106-122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36269214

RESUMO

Recent epidemiological findings link asthma to adverse cardiovascular responses. Yet, the precise cardiovascular impacts of asthma have been challenging to disentangle from the potential cardiovascular effects caused by asthma medication. The purpose of this study was to determine the impacts of allergic airways disease alone on cardiovascular function in an experimental model. Female Wistar rats were intranasally sensitized and then challenged once per week for 5 weeks with saline vehicle or a mixture of environmental allergens (ragweed, house dust mite, and Aspergillus fumigatus). Ventilatory and cardiovascular function, measured using double-chamber plethysmography and implantable blood pressure (BP) telemetry and cardiovascular ultrasound, respectively, were assessed before sensitization and after single and final allergen challenge. Responses to a single 0.5 ppm ozone exposure and to the cardiac arrhythmogenic agent aconitine were also assessed after final challenge. A single allergen challenge in sensitized rats increased tidal volume and specific airways resistance in response to provocation with methacholine and increased bronchoalveolar lavage fluid (BALF) eosinophils, neutrophils, lymphocytes, cytokines interleukin (IL)-4, IL-5, IL-10, IL-1ß, tumor necrosis factor-α, and keratinocyte chemoattract-growth-related oncogene characteristic of allergic airways responses. Lung responses after final allergen challenge in sensitized rats were diminished, although ozone exposure increased BALF IL-6, IL-13, IL-1 ß, and interferon-γ and modified ventilatory responses only in the allergen group. Final allergen challenge also increased systolic and mean arterial BP, stroke volume, cardiac output, end-diastolic volume, sensitivity to aconitine-induced cardiac arrhythmia, and cardiac gene expression with lesser effects after a single challenge. These findings demonstrate that allergic airways responses may increase cardiovascular risk in part by altering BP and myocardial function and by causing cardiac electrical instability.


Assuntos
Asma , Doenças Cardiovasculares , Hipersensibilidade , Ozônio , Ratos , Feminino , Animais , Eosinófilos/patologia , Aconitina , Doenças Cardiovasculares/patologia , Ratos Wistar , Fatores de Risco , Pulmão , Citocinas , Alérgenos/toxicidade , Líquido da Lavagem Broncoalveolar , Fatores de Risco de Doenças Cardíacas
7.
Inhal Toxicol ; 35(3-4): 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35867597

RESUMO

OBJECTIVE: Inhalation of ozone activates central sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal stress axes. While airway neural networks are known to communicate noxious stimuli to higher brain centers, it is not known to what extent responses generated from pulmonary airways contribute to neuroendocrine activation. MATERIALS AND METHODS: Unlike inhalational exposures that involve the entire respiratory tract, we employed intratracheal (IT) instillations to expose only pulmonary airways to either soluble metal-rich residual oil fly ash (ROFA) or compressor-generated diesel exhaust particles (C-DEP). Male Wistar-Kyoto rats (12-13 weeks) were IT instilled with either saline, C-DEP or ROFA (5 mg/kg) and necropsied at 4 or 24 hr to assess temporal effects. RESULTS: IT-instillation of particulate matter (PM) induced hyperglycemia as early as 30-min and glucose intolerance when measured at 2 hr post-exposure. We observed PM- and time-specific effects on markers of pulmonary injury/inflammation (ROFA>C-DEP; 24 hr>4hr) as corroborated by increases in lavage fluid injury markers, neutrophils (ROFA>C-DEP), and lymphocytes (ROFA). Increases in lavage fluid pro-inflammatory cytokines differed between C-DEP and ROFA in that C-DEP caused larger increases in TNF-α whereas ROFA caused larger increases in IL-6. No increases in circulating cytokines occurred. At 4 hr, PM impacts on neuroendocrine activation were observed through depletion of circulating leukocytes, increases in adrenaline (ROFA), and decreases in thyroid-stimulating-hormone, T3, prolactin, luteinizing-hormone, and testosterone. C-DEP and ROFA both increased lung expression of genes involved in acute stress and inflammatory processes. Moreover, small increases occurred in hypothalamic Fkbp5, a glucocorticoid-sensitive gene. CONCLUSION: Respiratory alterations differed between C-DEP and ROFA, with ROFA inducing greater overall lung injury/inflammation; however, both PM induced a similar degree of neuroendocrine activation. These findings demonstrate neuroendocrine activation after pulmonary-only PM exposure, and suggest the involvement of pituitary- and adrenal-derived hormones.


Assuntos
Poluentes Atmosféricos , Lesão Pulmonar , Ratos , Animais , Masculino , Material Particulado/toxicidade , Material Particulado/metabolismo , Poluentes Atmosféricos/toxicidade , Líquido da Lavagem Broncoalveolar , Ratos Sprague-Dawley , Ratos Endogâmicos WKY , Pulmão , Cinza de Carvão , Lesão Pulmonar/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia
8.
Environ Health Perspect ; 130(12): 127006, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542476

RESUMO

BACKGROUND: Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES: We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS: First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS: Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION: We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.


Assuntos
Poluentes Atmosféricos , Ozônio , Ratos , Masculino , Animais , Glucose , Receptores de Glucocorticoides , Automonitorização da Glicemia , Irritantes , Glicemia , Ratos Endogâmicos WKY , Corticosterona , Ozônio/toxicidade , Poluentes Atmosféricos/toxicidade , Adrenérgicos
9.
Toxicol Appl Pharmacol ; 457: 116295, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341779

RESUMO

Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.

10.
FASEB J ; 36(12): e22664, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412511

RESUMO

Altered fetal growth, which can occur due to environmental stressors during pregnancy, may program a susceptibility to metabolic disease. Gestational exposure to the air pollutant ozone is associated with fetal growth restriction in humans and rodents. However, the impact of this early life ozone exposure on offspring metabolic risk has not yet been investigated. In this study, fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone on gestation days 5 and 6 (4 hr/day) in Long Evans rats. To uncover any metabolic inflexibility, or an impaired ability to respond to a high-fat diet (HFD), a subset of peri-adolescent male and female offspring from filtered air or ozone exposed dams were fed HFD (45% kcal from fat) for 3 days. By 6 weeks of age, male and female offspring from ozone-exposed dams were heavier than offspring from air controls. Furthermore, offspring from ozone-exposed dams had greater daily caloric consumption and reduced metabolic rate when fed HFD. In addition to energy imbalance, HFD-fed male offspring from ozone-exposed dams had dyslipidemia and increased adiposity, which was not evident in females. HFD consumption in males resulted in the activation of the protective 5'AMP-activated protein kinase (AMPKα) and sirtuin 1 (SIRT1) pathways in the liver, regardless of maternal exposure. Unlike males, ozone-exposed female offspring failed to activate these pathways, retaining hepatic triglycerides following HFD consumption that resulted in increased inflammatory gene expression and reduced insulin signaling genes. Taken together, maternal ozone exposure in early pregnancy programs impaired metabolic flexibility in offspring, which may increase susceptibility to obesity in males and hepatic dysfunction in females.


Assuntos
Dieta Hiperlipídica , Ozônio , Gravidez , Animais , Ratos , Humanos , Masculino , Feminino , Adolescente , Dieta Hiperlipídica/efeitos adversos , Ratos Long-Evans , Ozônio/toxicidade , Retardo do Crescimento Fetal , Obesidade/metabolismo , Vitaminas
11.
Toxicology ; 463: 152972, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606950

RESUMO

The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.


Assuntos
Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Disruptores Endócrinos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Obesidade/metabolismo , Termogênese/efeitos dos fármacos
12.
Microbiol Spectr ; 9(2): e0069321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523986

RESUMO

Noninvasive salivary antibody immunoassays can enable low-cost epidemiological surveillance of infections. This study involved developing and validating a multiplex suspension immunoassay on the Luminex platform to measure immunoglobulin G (IgG) responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and spike (S) proteins, and the spike protein's S1 and S2 subunits and receptor binding domain. Multiple versions of these recombinant proteins acquired from commercial and noncommercial sources were evaluated. Assay development and validation utilized saliva and serum samples from coronavirus disease 2019 (COVID-19) cases procured from commercial sources and negative controls from a prepandemic survey. Saliva was also collected in a demonstration survey by mail involving adult individuals in the United States who were diagnosed with SARS-CoV-2 infection 15 to 80 days prior to sample collection. The survey had an 83% valid sample return rate (192 samples from 38 states). Most COVID-19 cases (93%) reported mildly symptomatic or asymptomatic infections. The final salivary assay based on the best-performing spike and nucleocapsid proteins had a sensitivity of 87.1% (95% bootstrap confidence interval, 82.1 to 91.7%) and specificity of 98.5% (95.0 to 100%) using 227 and 285 saliva samples, respectively. The same assay had 95.9% (92.8 to 98.9%) sensitivity and 100% (98.4 to 100%) specificity in serum (174 and 285 serum samples, respectively). Salivary and serum antibody responses to spike and nucleocapsid proteins were strongly correlated in 22 paired samples (r = 0.88 and r = 0.80, respectively). Antibody responses peaked at approximately 50 days postonset; greater illness severity was associated with stronger responses. This study demonstrated that a salivary antibody assay can be used in large-scale population surveys by mail to better characterize public health impacts of COVID-19. IMPORTANCE Given the enormous impacts of the COVID-19 pandemic, developing tools for population surveillance of infection is of paramount importance. This article describes the development of a multiplex immunoassay on a Luminex platform to measure salivary immunoglobulin G responses to the spike protein, its two subunits and receptor binding domain, and the nucleocapsid protein of SARS-CoV-2. The assay validation utilized serum and saliva samples from prepandemic controls and recent COVID-19 cases. A survey by mail targeting recent COVID-19 cases across the United States also demonstrated the utility of safe, at-home self-collection of saliva. By incorporating multiple SARS-CoV-2 proteins, this assay may differentiate responses to natural SARS-CoV-2 infections from responses to most vaccines. Application of this noninvasive immunoassay in COVID-19 surveillance can help provide estimates of cumulative incidence rates of symptomatic and asymptomatic infections in various communities and subpopulations, temporal patterns of antibody responses, and risk factors for infection.


Assuntos
Anticorpos Antivirais/análise , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoglobulina G/análise , SARS-CoV-2/imunologia , Saliva/imunologia , Adolescente , Adulto , Idoso , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Serviços Postais , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
13.
PLoS One ; 12(9): e0184155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898253

RESUMO

Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton's Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.


Assuntos
Bioengenharia , Técnicas de Cultura de Órgãos , Palato/embriologia , Esferoides Celulares , Fosfatase Alcalina/metabolismo , Bioengenharia/métodos , Diferenciação Celular/genética , Análise por Conglomerados , Biologia Computacional/métodos , Proteínas da Matriz Extracelular , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Palato/metabolismo , Fatores de Tempo , Transcriptoma
14.
Chem Biol Interact ; 194(1): 79-89, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21864511

RESUMO

Propiconazole induces hepatocellular carcinomas and hepatocellular adenomas in mice and promotes liver tumors in rats. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicated that propiconazole induced oxidative stress. Here we sought to identify the source of the reactive oxygen species (ROS) induced by propiconazole using both AML12 immortalized mouse hepatocytes in culture and liver tissues from mice. We also sought to further characterize the nature and effects of ROS formation induced by propiconazole treatment in mouse liver. ROS was induced in AML12 cells by propiconazole as measured by fluorescence detection and its formation was ameliorated by N-acetylcysteine. Propiconazole induced glutathione-S-transferase (GSTα) protein levels and increased the levels of thiobarbituric acid reactive substances (TBARS) in AML12 cells. The TBARS levels were decreased by diphenylene iodonium chloride (DPIC), a cytochrome P450 (CYP) reductase inhibitor revealing the role of CYPs in ROS generation. It has been previously reported that Cyp2b and Cyp3a proteins were induced in mouse liver by propiconazole and that Cyp2b and Cyp3a proteins undergo uncoupling of their CYP catalytic cycle releasing ROS. Therefore, salicylic acid hydroxylation was used as probe for ROS formation using microsomes from mice treated with propiconazole. These studies showed that levels of 2,3-dihydroxybenzoic acid (an ROS derived metabolite) were decreased by ketoconazole, melatonin and DPIC. In vivo, propiconazole increased hepatic malondialdehyde levels and GSTα protein levels and had no effect on hepatic catalase or superoxide dismutase activities. Based on these observations we conclude that propiconazole induces ROS in mouse liver by increasing CYP protein levels leading to increased ROS levels. Our data also suggest that propiconazole induces the hydroxyl radical as a major ROS form.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triazóis/toxicidade , Adenoma de Células Hepáticas/metabolismo , Adenoma de Células Hepáticas/patologia , Animais , Células Cultivadas , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos
15.
Cell Biol Toxicol ; 27(3): 207-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21243523

RESUMO

Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involved are unknown. Chloral hydrate (CH), a by-product of chlorine disinfection of water, is carcinogenic in mice, and we demonstrated that CH reduced GJC in a rat liver epithelial cell line (Clone 9). To examine the mechanism(s) by which CH inhibits GJC, Clone 9 cells treated with CH were examined using Western blot, real-time polymerase chain reaction, immunocytochemical, and dye-communication techniques. Treatment with CH (0.1­5 mM for 24 h) resulted in a dose-dependent inhibition of GJC as measured by Lucifer yellow dye transfer. Western blot analysis demonstrated expression of connexin (Cx) 43 and 26 in control cells and reduced expression of Cx 43 but not Cx 26 protein from 0.1 to 1 mM CH. CH treatment from 2.5 to 5 mM caused an apparent increase in expression of both connexins that was concomitant with a reduction in mRNA expression for both connexins. Similarly, with immunocytochemistry, a dose-dependent decrease in Cx 43 staining at sites of cell­cell contact was apparent in CH (0.5­5 mM)-treated cultures, whereas no Cx 26 staining was observed. Thus, Clone 9 cells contain two types of connexins but only one type of plasma membrane channel. Understanding of the regulation of connexin may shed light on mechanisms responsible for inhibition of GJC by chemical carcinogens.


Assuntos
Comunicação Celular/efeitos dos fármacos , Hidrato de Cloral/toxicidade , Células Epiteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Conexina 26 , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células Epiteliais/metabolismo , Junções Comunicantes/fisiologia , Humanos , Fígado/citologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
16.
Toxicology ; 262(2): 106-13, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19450653

RESUMO

Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (approximately 8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period.


Assuntos
Neoplasias das Glândulas Suprarrenais/induzido quimicamente , Arsenitos/toxicidade , Carcinógenos/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Oviductos/efeitos dos fármacos , Compostos de Sódio/toxicidade , Bexiga Urinária/efeitos dos fármacos , Administração Oral , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Esquema de Medicação , Feminino , Hiperplasia/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , Exposição Materna , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C3H , Oviductos/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fatores de Tempo , Bexiga Urinária/patologia , Abastecimento de Água
17.
Toxicol Lett ; 164(1): 44-53, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16406388

RESUMO

This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods were used as measures of Cyp enzyme activities. Western analyses identified specific Cyp isoforms. Quantitative real-time reverse-transcription polymerase chain reaction (quantitative real time-RT-PCR) assays were used to quantitate the mRNA expression of specific Cyp genes induced by this conazole. Rats and mice were administered fluconazole 2, 25, or 50 mg/kg bw/d by gavage daily for 14 days. In rats, fluconazole treatment (50 mg/kg bw/d) significantly induced pentoxyresorufin O-dealkylation (PROD), benzyloxyresorufin O-dealkylation (BROD), and ethoxyresorufin O-dealkylation (EROD) hepatic microsomal activities. Fluconazole treatment significantly increased rat hepatic mRNA expression of CYP2B1 and CYP3A23/3A1 with dose-related responses. The highest dose of fluconazole gave a 128-fold induction of CYP2B1 and a 4.6-fold induction of CYP3A23/3A1 mRNA. CYP3A2 mRNA levels were also overexpressed 5.6-7.2-fold depending on dose. Western immunoblots of rat hepatic microsomal proteins identified Cyp isoforms: CYP1A1, CYP1A2, CYP2B1/2, CYP3A23/3A1, and Cyp3A2 with increased levels of CYP2B1/2 and CYP3A23/3A1 proteins. In mice, fluconazole induced BROD, PROD, EROD, and methoxyresorufin O-dealkylation hepatic microsomal activities after treatment with 25 and 50 mg/kg bw/d. Fluconazole increased mouse hepatic mRNA expression of Cyp2b10 (1.9-fold) and Cyp3a11 (2.6-fold) in the 50 mg/kg bw/d treatment group. In summary, these results indicated that fluconazole, a triazole-containing conazole, clearly induced CYP2B and CYP3A families of isoforms in rat liver and Cyp2b and Cyp3a families of isoforms in mouse liver.


Assuntos
Antifúngicos/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Fluconazol/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Western Blotting , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Mutat Res ; 572(1-2): 98-112, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15790493

RESUMO

1,1-Dichloropropene (1,1-DCPe) is a contaminant of some source waters used to make drinking water. Because of this and the fact that no toxicological data were available for this compound, which is structurally similar to the rodent carcinogen 1,3-dichloropropene (1,3-DCPe), 1,1-DCPe was placed on the Contaminant Candidate List of the US Environmental Protection Agency. Consequently, we have performed a hazard characterization of 1,1-DCPe by evaluating its mutagenicity in the Salmonella assay and its DNA damaging (comet assay) and apoptotic (caspase assay) activities in human lymphoblastoid cells. In Salmonella, 1,1-DCPe was not mutagenic in strains TA98, TA100, TA1535, or TA104 +/-S9 mix. However, it was clearly mutagenic in strain RSJ100, which expresses the rat GSTT1-1 gene. 1,1-DCPe did not induce DNA damage in GSTT1-1-deficient human lymphoblastoid cells, and it induced apoptosis in these cells only at 5 mM. Consistent with its mutagenesis in RSJ100, 1,1-DCPe reacted with glutathione (GSH) in vitro, suggesting an addition-elimination mechanism to account for the detected GSH conjugate. 1,1-DCPe was approximately 5000 times more mutagenic than its ethene congener 1,1-dichloroethylene (1,1-DCE or vinylidene chloride). Neither 1,1-DCE nor 1,3-DCPe showed enhanced mutagenicity in strain RSJ100, indicating a lack of activation of these congeners by GSTT1-1. Thus, 1,1-DCPe is a base-substitution mutagen requiring activation by GSTT1-1, possibly involving the production of a reactive episulfonium ion. This bioactivation mechanism of 1,1-DCPe is different from that of its congeners 1,1-DCE and 1,3-DCPe. The presence of 1,1-DCPe in source waters could pose an ecological or human health risk. Occurrence data for 1,1-DCPe in finished drinking water are needed to estimate human exposure to, and possible health risks from, this mutagenic compound.


Assuntos
Compostos Alílicos/toxicidade , Glutationa Transferase/metabolismo , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos Alílicos/metabolismo , Animais , Apoptose , Biotransformação , Linhagem Celular , Ensaio Cometa , Humanos , Hidrocarbonetos Clorados , Microssomos Hepáticos/metabolismo , Mutagênicos/metabolismo , Ratos , Salmonella typhimurium/genética , Relação Estrutura-Atividade , Poluentes Químicos da Água/metabolismo
19.
Exp Eye Res ; 79(1): 51-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15183100

RESUMO

Epidermal growth factor (EGF) previously has been shown to stimulate short-term survival in vitro of cells derived from the native amphibian retinal pigment epithelium (RPE). In the present experiments, we have examined intracellular signaling pathways responsible for mediating these survival-specific growth factor effects, distinct from proliferative effects, using the human epithelial cell line RPE D407. When maintained as single cells in suspension culture in the absence of serum and exogenous survival factors, RPE D407 cell viability gradually declined over a 3-4 day period as a result of apoptotic cell death, a pattern similar to that seen for eye-derived RPE cells. Exposure to EGF (50 ng ml(-1)) enhanced cell survival by nearly 40% and caused a parallel increase in the tyrosine phosphate content of the EGF receptor (EGFR), as determined by immunoprecipitation and Western blotting. Both effects were completely blocked by 1 microm AG1478, an EGFR-selective tyrosine kinase inhibitor. EGF also stimulated phosphorylation of the phosphatidylinositol 3'-kinase (PI3K)-dependent effector kinase Akt, as well as that of the MEK-dependent mitogen-activated kinase (MAPK), extracellular signal-regulated kinase (ERK). Furthermore, EGF-induced protection was substantially reduced by either the PI3K inhibitor LY294002 (25 microm) or the MEK inhibitor U0126 (10 microm), under conditions in which phosphorylation of Akt and ERK1/2, respectively, was blocked. Our results indicate that EGF-stimulated survival of RPE D407 cells takes place as a result of signaling through both PI3K and ERK/MAPK pathways. Further, residual anti-apoptotic activity stimulated by EGF in the presence of both blockers suggests that additional as yet unidentified growth factor-dependent survival pathways exist.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Análise de Variância , Western Blotting/métodos , Linhagem Celular , Sobrevivência Celular , Humanos , Fosforilação , Testes de Precipitina , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...