Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26274276

RESUMO

The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25353910

RESUMO

In this paper, we present and justify an effective strategy for performing three-dimensional (3D) inertial-confinement-fusion (ICF) capsule simulations. We have evaluated a frequently used strategy in which two-dimensional (2D) simulations are rotated to 3D once sufficient relevant 2D flow physics has been captured and fine resolution requirements can be restricted to relatively small regions. This addresses situations typical of ICF capsules which are otherwise prohibitively intensive computationally. We tested this approach for our previously reported fully 3D simulations of laser-driven reshock experiments where we can use the available 3D data as reference. Our studies indicate that simulations that begin as purely 2D lead to significant underprediction of mixing and turbulent kinetic energy production at later time when compared to the fully 3D simulations. If, however, additional suitable nonuniform perturbations are applied at the time of rotation to 3D, we show that one can obtain good agreement with the purely 3D simulation data, as measured by vorticity distributions as well as integrated mixing and turbulent kinetic energy measurements. Next, we present results of simulations of a simple OMEGA-type ICF capsule using the developed strategy. These simulations are in good agreement with available experimental data and suggest that the dominant mechanism for yield degradation in ICF implosions is hydrodynamic instability growth seeded by long-wavelength surface defects. This effect is compounded by drive asymmetries and amplified by repeated shock interactions with an increasingly distorted shell, which results in further yield reduction. Our simulations are performed with and without drive asymmetries in order to compare the importance of these effects to those of surface defects; our simulations indicate that long-wavelength surface defects degrade yield by approximately 60% and short-wavelength drive asymmetry degrades yield by a further 30%.


Assuntos
Deutério/química , Imageamento Tridimensional/métodos , Modelos Químicos , Fusão Nuclear , Análise Numérica Assistida por Computador , Trítio/química , Algoritmos , Simulação por Computador , Deutério/efeitos da radiação , Lasers , Trítio/efeitos da radiação
3.
Artigo em Inglês | MEDLINE | ID: mdl-24580356

RESUMO

In implicit large-eddy simulation (ILES), energy-containing large scales are resolved, and physics capturing numerics are used to spatially filter out unresolved scales and to implicitly model subgrid scale effects. From an applied perspective, it is highly desirable to estimate a characteristic Reynolds number (Re)-and therefore a relevant effective viscosity-so that the impact of resolution on predicted flow quantities and their macroscopic convergence can usefully be characterized. We argue in favor of obtaining robust Re estimates away from the smallest scales of the simulated flow-where numerically controlled dissipation takes place and propose a theoretical basis and framework to determine such measures. ILES examples include forced turbulence as a steady flow case, the Taylor-Green vortex to address transition and decaying turbulence, and simulations of a laser-driven reshock experiment illustrating a fairly complex turbulence problem of current practical interest.

4.
Philos Trans A Math Phys Eng Sci ; 367(1899): 2931-45, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19531513

RESUMO

Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA