Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35981073

RESUMO

This article evaluates and compares the performance and perception of prosthetic devices based on different design principles, a traditional rigid gripper and an adaptable poly-articulated hand, in a pre- and post-training protocol with an individual with bilateral amputation. As a representative of the first class, we use commercial hands (Ottobock's MyoHand VariPlus Speed), which is a widely adopted model by prosthesis users worldwide. We compare these with two SoftHand Pro hands, which are experimental prototypes exhibiting 19 articulations actuated by one single motor, and are inspired by human hand motor control models. Results show that the individual with bilateral amputation, who was a non-expert myoelectric user, achieved better performance with adaptive poly-articulated hands. Furthermore, the acceptation, satisfaction and perceived functionality of the user were considerably higher for the SoftHand Pro. An observational analysis of the patient's behaviour by experienced therapists suggests that adaptable poly-articulated hands reduced compensatory movements and cognitive load. Using soft technologies may be especially advantageous for individuals with bilateral amputation, who present a very limited residual mobility and can largely benefit from the active use of their artificial arms in everyday life.


Assuntos
Membros Artificiais , Biônica , Amputação Cirúrgica , Mãos , Humanos , Percepção , Desenho de Prótese
2.
IEEE Int Conf Rehabil Robot ; 2013: 6650377, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24187196

RESUMO

In this paper, we present the Pisa/IIT SoftHand with myoelectric control as a synergy-driven approach for a prosthetic hand. Commercially available myoelectric hands are more expensive, heavier, and less robust than their body-powered counterparts; however, they can offer greater freedom of motion and a more aesthetically pleasing appearance. The Pisa/IIT SoftHand is built on the motor control principle of synergies through which the immense complexity of the hand is simplified into distinct motor patterns. As the SoftHand grasps, it follows a synergistic path with built-in flexibility to allow grasping of a wide variety of objects with a single motor. Here we test, as a proof-of-concept, 4 myoelectric controllers: a standard controller in which the EMG signal is used only as a position reference, an impedance controller that determines both position and stiffness references from the EMG input, a standard controller with vibrotactile force feedback, and finally a combined vibrotactile-impedance (VI) controller. Four healthy subjects tested the control algorithms by grasping various objects. All controllers were sufficient for basic grasping, however the impedance and vibrotactile controllers reduced the physical and cognitive load on the user, while the combined VI mode was the easiest to use of the four. While these results need to be validated with amputees, they suggest a low-cost, robust hand employing hardware-based synergies is a viable alternative to traditional myoelectric prostheses.


Assuntos
Membros Artificiais , Força da Mão/fisiologia , Mãos/fisiologia , Robótica/instrumentação , Adulto , Algoritmos , Amputados/reabilitação , Membros Artificiais/estatística & dados numéricos , Eletromiografia , Humanos , Masculino , Desenho de Prótese , Robótica/métodos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...