Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 41(3): 395-405, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29209845

RESUMO

Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.


Assuntos
Acetona/isolamento & purificação , Butanóis/isolamento & purificação , Destilação , Etanol/isolamento & purificação , Modelos Químicos
2.
Bioresour Bioprocess ; 4(1): 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28251042

RESUMO

BACKGROUND: Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. METHODS: The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. RESULTS: Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. CONCLUSIONS: The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...