Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771527

RESUMO

Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants. A 16 h (light):8 h (dark) illumination regime was used as the control. In this work, we investigated the effect of photoperiod on total biomass and dry weight production in lettuce plants as well as on photosynthesis, respiration rate and chlorophyll content. A lighting regime 16:8 h (light:dark) was used as control. A shorter photoperiod (8 h) decreased total biomass and dry weight in lettuce, and this effect was related to the suppression of the linear electron flow caused by the decreasing content of chlorophylls and, therefore, light absorption. A longer photoperiod (24 h) increased the total biomass and dry weight, nevertheless an increase in photosynthetic processes, light absorption by leaves and chlorophyll content was not recorded, nor were differences in respiration rate, thus indicating that changes in photosynthesis and respiration are not necessary conditions for stimulating plant production. A simple model to predict plant production was also developed to address the question of whether increasing the duration of illumination stimulates plant production without inducing changes in photosynthesis and respiration. Our results indicate that increasing the duration of illumination can stimulate dry weight accumulation and that this effect can also be induced using the equal total light integrals for day (i.e., this stimulation can be also caused by increasing the light period while decreasing light intensity). Increasing the duration of illumination is therefore an effective approach to stimulating lettuce production under artificial lighting.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36141828

RESUMO

Background: The role of preventive measures increases significantly in the absence of effective specific COVID-19 treatment. Mass population immunization and the achievement of collective immunity are of particular importance. The future development of public attitudes towards SARS-CoV-2 immunization depends significantly on medical students, as future physicians. Therefore, it seemed relevant to determine the percentage of COVID-19-vaccinated medical students and to identify the factors significantly affecting this indicator. Methods: A total of 2890 medical students from years one to six, studying at nine leading Russian medical universities, participated in an anonymous sociological survey. The study was performed in accordance with the STROBE guidelines. Results: It was found that the percentage of vaccinated Russian medical students at the beginning of the academic year 2021 was 58.8 ± 7.69%, which did not significantly differ from the vaccination coverage of the general population in the corresponding regions (54.19 ± 4.83%). Student vaccination rate was largely determined by the region-specific epidemiological situation. The level of student vaccination coverage did not depend on the gender or student residence (in a family or in a university dormitory). The group of senior students had a higher number of COVID-19 vaccine completers than the group of junior students. The lack of reliable information about COVID-19 vaccines had a pronounced negative impact on the SARS-CoV-2 immunization process. Significant information sources influencing student attitudes toward vaccination included medical professionals, medical universities, academic conferences, and manuscripts, which at that time provided the least information. Conclusion: The obtained results make it possible to develop recommendations to promote SARS-CoV-2 immunoprophylaxis among students and the general population and to increase collective immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Estudantes de Medicina , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , SARS-CoV-2 , Universidades , Vacinação
3.
Plants (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202814

RESUMO

The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems. The positive effect of Si fertilizer used as a microadditive in the nutrient solution on the freshly harvested biomass was established on the thirtieth day of vegetation under LEDs. Increase in productivity of the red-leaved lettuce for freshly harvested biomass was 26.6%, while for the green-leaved lettuce no loss of dry matter was observed. However, being grown under sodium lamps, a negative impact of Si fertilizer on productivity of both types of plants was observed: the amount of harvested biomass decreased by 22.6% and 30.3% for the green- and red-leaved lettuces, respectively. The effect of using Si fertilizer dramatically changed during the total growing period: up to the fifteenth day of cultivation, a sharp inhibition of the growth of both types of lettuce was observed; then, by the thirtieth day of LED lighting, Si fertilizer showed a stress-protective effect and had a positive influence on the plants. However, by the period of ripening there was no effect of using the fertilizer. Therefore, we can conclude that the use of Si fertilizers is preferable only when LED irradiation is applied throughout the active plant growth period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...