Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34035557

RESUMO

Förster resonance energy transfer (FRET) is a valuable tool for measuring molecular distances and the effects of biological processes such as cyclic nucleotide messenger signaling and protein localization. Most FRET techniques require two fluorescent proteins with overlapping excitation/emission spectral pairing to maximize detection sensitivity and FRET efficiency. FRET microscopy often utilizes differing peak intensities of the selected fluorophores measured through different optical filter sets to estimate the FRET index or efficiency. Microscopy platforms used to make these measurements include wide-field, laser scanning confocal, and fluorescence lifetime imaging. Each platform has associated advantages and disadvantages, such as speed, sensitivity, specificity, out-of-focus fluorescence, and Z-resolution. In this study, we report comparisons among multiple microscopy and spectral filtering platforms such as standard 2-filter FRET, emission-scanning hyperspectral imaging, and excitation-scanning hyperspectral imaging. Samples of human embryonic kidney (HEK293) cells were grown on laminin-coated 28 mm round gridded glass coverslips (10816, Ibidi, Fitchburg, Wisconsin) and transfected with adenovirus encoding a cAMP-sensing FRET probe composed of a FRET donor (Turquoise) and acceptor (Venus). Additionally, 3 FRET "controls" with fixed linker lengths between Turquoise and Venus proteins were used for inter-platform validation. Grid locations were logged, recorded with light micrographs, and used to ensure that whole-cell FRET was compared on a cell-by-cell basis among the different microscopy platforms. FRET efficiencies were also calculated and compared for each method. Preliminary results indicate that hyperspectral methods increase the signal-to-noise ratio compared to a standard 2-filter approach.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34045785

RESUMO

In the past two decades, spectral imaging technologies have expanded the capacity of fluorescence microscopy for accurate detection of multiple labels, separation of labels from cellular and tissue autofluorescence, and analysis of autofluorescence signatures. These technologies have been implemented using a range of optical techniques, such as tunable filters, diffraction gratings, prisms, interferometry, and custom Bayer filters. Each of these techniques has associated strengths and weaknesses with regard to spectral resolution, spatial resolution, temporal resolution, and signal-to-noise characteristics. We have previously shown that spectral scanning of the fluorescence excitation spectrum can provide greatly increased signal strength compared to traditional emission-scanning approaches. Here, we present results from utilizing a Hyperspectral Imaging Fluorescence Excitation Scanning (HIFEX) microscope system for live cell imaging. Live cell signaling studies were performed using HEK 293 and rat pulmonary microvascular endothelial cells (PMVECs), transfected with either a cAMP FRET reporter or a Ca2+ reporter. Cells were further labeled to visualize subcellular structures (nuclei, membrane, mitochondria, etc.). Spectral images were acquired using a custom inverted microscope (TE2000, Nikon Instruments) equipped with a 300W Xe arc lamp and tunable excitation filter (VF-5, Sutter Instrument Co., equipped with VersaChrome filters, Semrock), and run through MicroManager. Timelapse spectral images were acquired from 350-550 nm, in 5 nm increments. Spectral image data were linearly unmixed using custom MATLAB scripts. Results indicate that the HIFEX microscope system can acquire live cell image data at acquisition speeds of 8 ms/wavelength band with minimal photobleaching, sufficient for studying moderate speed cAMP and Ca2+ events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...