Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(1): 153-163, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623275

RESUMO

Botulinum neurotoxin serotype A (BoNT/A) is a widely used cosmetic agent that also has diverse therapeutic applications; however, adverse antidrug immune responses and associated loss of efficacy have been reported in clinical uses. Here, we describe computational design and ultrahigh-throughput screening of a massive BoNT/A light-chain (BoNT/A-LC) library optimized for reduced T cell epitope content and thereby dampened immunogenicity. We developed a functional assay based on bacterial co-expression of BoNT/A-LC library members with a Förster resonance energy transfer (FRET) sensor for BoNT/A-LC enzymatic activity, and we employed high-speed fluorescence-activated cell sorting (FACS) to identify numerous computationally designed variants having wild-type-like enzyme kinetics. Many of these variants exhibited decreased immunogenicity in humanized HLA transgenic mice and manifested in vivo paralytic activity when incorporated into full-length toxin. One variant achieved near-wild-type paralytic potency and a 300% reduction in antidrug antibody response in vivo. Thus, we have achieved a striking level of BoNT/A-LC functional deimmunization by combining computational library design and ultrahigh-throughput screening. This strategy holds promise for deimmunizing other biologics with complex superstructures and mechanisms of action.


Assuntos
Anticorpos , Camundongos , Animais , Camundongos Transgênicos , Biblioteca Gênica , Domínios Proteicos
2.
PLoS Comput Biol ; 17(4): e1008889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793553

RESUMO

Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/farmacologia
3.
Biotechnol Bioeng ; 118(7): 2482-2492, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33748952

RESUMO

Clostridioides difficile is the single most deadly bacterial pathogen in the United States, and its global prevalence and outsized health impacts underscore the need for more effective therapeutic options. Towards this goal, a novel group of modified peptidoglycan hydrolases with significant in vitro bactericidal activity have emerged as potential candidates for treating C. difficile infections (CDI). To date, discovery and development efforts directed at these CDI-specific lysins have been limited, and in particular there has been no systematic comparison of known or newly discovered lysin candidates. Here, we detail bioinformatics-driven discovery of six new anti-C. difficile lysins belonging to the amidase-3 family of enzymes, and we describe experimental comparison of their respective catalytic domains (CATs) with highly active CATs from the literature. Our quantitative analyses include metrics for expression level, inherent antibacterial activity, breadth of strain selectivity, killing of germinating spores, and structural and functional measures of thermal stability. Importantly, prior studies have not examined stability as a performance metric, and our results show that the panel of eight enzymes possess widely variable thermal denaturation temperatures and resistance to heat inactivation, including some enzymes that exhibit marginal stability at body temperature. Ultimately, no single enzyme dominated with respect to all performance measures, suggesting the need for a balanced assessment of lysin properties during efforts to find, engineer, and develop candidates with true clinical potential.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Biologia Computacional , N-Acetil-Muramil-L-Alanina Amidase , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Humanos , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Domínios Proteicos
4.
FEBS Open Bio ; 11(3): 705-713, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33480189

RESUMO

Combinations of human lysozyme (hLYS) and antimicrobial peptides (AMPs) are known to exhibit either additive or synergistic activity, and as a result, they have therapeutic potential for persistent and antibiotic-resistant infections. We examined hLYS activity against Pseudomonas aeruginosa when combined with six different AMPs. In contrast to prior reports, we discovered that some therapeutically relevant AMPs manifest striking antagonistic interactions with hLYS across particular concentration ranges. We further found that the synthetic AMP Tet009 can inhibit hLYS-mediated bacterial lysis. To the best of our knowledge, these results represent the first observations of antagonism between hLYS and AMPs, and they advise that future development of lytic enzyme and AMP combination therapies considers the potential for antagonistic interactions.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Muramidase/efeitos adversos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Peptídeos Antimicrobianos/química , Bacteriólise/efeitos dos fármacos , Antagonismo de Drogas , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33468459

RESUMO

Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.


Assuntos
Lisostafina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cinética , Lisostafina/metabolismo , Lisostafina/farmacologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Eletricidade Estática
6.
Artigo em Inglês | MEDLINE | ID: mdl-33318001

RESUMO

There is an urgent need for novel agents to treat drug-resistant bacterial infections, such as multidrug-resistant Staphylococcus aureus (MRSA). Desirable properties for new antibiotics include high potency, narrow species selectivity, low propensity to elicit new resistance phenotypes, and synergy with standard-of-care (SOC) chemotherapies. Here, we describe analysis of the antibacterial potential exhibited by F12, an innovative anti-MRSA lysin that has been genetically engineered to evade detrimental antidrug immune responses in human patients. F12 possesses high potency and rapid onset of action, it has narrow selectivity against pathogenic staphylococci, and it manifests synergy with numerous SOC antibiotics. Additionally, resistance to F12 and ß-lactam antibiotics appears mutually exclusive, and, importantly, we provide evidence that F12 resensitizes normally resistant MRSA strains to ß-lactams both in vitro and in vivo These results suggest that combinations of F12 and SOC antibiotics are a promising new approach to treating refractory S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sinergismo Farmacológico , Humanos , Lisostafina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , beta-Lactamas/farmacologia
7.
PLoS Comput Biol ; 16(8): e1008150, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866140

RESUMO

Precise binding mode identification and subsequent affinity improvement without structure determination remain a challenge in the development of therapeutic proteins. However, relevant experimental techniques are generally quite costly, and purely computational methods have been unreliable. Here, we show that integrated computational and experimental epitope localization followed by full-atom energy minimization can yield an accurate complex model structure which ultimately enables effective affinity improvement and redesign of binding specificity. As proof-of-concept, we used a leucine-rich repeat (LRR) protein binder, called a repebody (Rb), that specifically recognizes human IgG1 (hIgG1). We performed computationally-guided identification of the Rb:hIgG1 binding mode and leveraged the resulting model to reengineer the Rb so as to significantly increase its binding affinity for hIgG1 as well as redesign its specificity toward multiple IgGs from other species. Experimental structure determination verified that our Rb:hIgG1 model closely matched the co-crystal structure. Using a benchmark of other LRR protein complexes, we further demonstrated that the present approach may be broadly applicable to proteins undergoing relatively small conformational changes upon target binding.


Assuntos
Proteínas/química , Humanos , Proteínas de Repetições Ricas em Leucina , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo
8.
Sci Adv ; 6(36)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917596

RESUMO

There is a critical need for novel therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant pathogens, and lysins are among the vanguard of innovative antibiotics under development. Unfortunately, lysins' own microbial origins can elicit detrimental antidrug antibodies (ADAs) that undermine efficacy and threaten patient safety. To create an enhanced anti-MRSA lysin, a novel variant of lysostaphin was engineered by T cell epitope deletion. This "deimmunized" lysostaphin dampened human T cell activation, mitigated ADA responses in human HLA transgenic mice, and enabled safe and efficacious repeated dosing during a 6-week longitudinal infection study. Furthermore, the deimmunized lysostaphin evaded established anti-wild-type immunity, thereby providing significant anti-MRSA protection for animals that were immune experienced to the wild-type enzyme. Last, the enzyme synergized with daptomycin to clear a stringent model of MRSA endocarditis. By mitigating T cell-driven antidrug immunity, deimmunized lysostaphin may enable safe, repeated dosing to treat refractory MRSA infections.


Assuntos
Lisostafina , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Lisostafina/farmacologia , Lisostafina/uso terapêutico , Camundongos , Camundongos Transgênicos
9.
Vaccine ; 38(18): 3436-3446, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32192810

RESUMO

Antibodies against the HIV-1 V1V2 loops were the only correlate of reduced infection risk in the RV144 vaccine trial, highlighting the V1V2 loops as promising targets for vaccine design. The V1V2 loops are structurally plastic, exhibiting either an α-helix-coil or ß-strand conformation. V1V2-specific antibodies may thus recognize distinct conformations, and an antibody's conformational specificity can be an important determinant of breadth and function. Restricting V1V2 conformational plasticity in an immunogen may thus provide control over the conformational specificity and quality of a vaccine-elicited antibody response. Previously, we identified a V1V2 sequence variant (K155M) that results in enhanced recognition by cross-reactive antibodies recognizing the ß-strand conformation. Here, we relate V1V2 antigenicity to immunogenicity by comparing the immunogenicity profiles of wildtype and K155M immunogens in two mouse models. In one model, immunization with gp70 V1V2 K155M but not wildtype elicited antibody responses that were cross-reactive to a panel of heterologous gp120 and gp140 antigens. In a second model, we compared the effect of K155M on immunogenicity in the context of gp70 V1V2, gD V1V2 and gp120, examining the effects of scaffold, epitope-focusing and immunization regimen. K155M variants, especially in the context of a gp120 immunogen, resulted in more robust, durable and cross-reactive antibody responses than wildtype immunogens. Restriction of the ß-stranded V1V2 conformation in K155M immunogens may thus be associated with the induction of cross-reactive antibody responses thought to be required of a protective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , Anticorpos Anti-HIV , Infecções por HIV , Animais , Anticorpos Neutralizantes , Formação de Anticorpos , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Camundongos
11.
Nat Commun ; 9(1): 2635, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980663

RESUMO

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Evolução Biológica , Interações Hospedeiro-Patógeno , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Adaptação Fisiológica/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Contagem de Colônia Microbiana , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação para Baixo , Células Epiteliais/metabolismo , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Movimento , Muramidase/metabolismo , Mutação/genética , Análise de Componente Principal , Proteômica , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação
12.
Bioinformatics ; 34(13): i245-i253, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949961

RESUMO

Motivation: Disruption of protein-protein interactions can mitigate antibody recognition of therapeutic proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among other applications. While designing affinity-enhancing mutations remains generally quite challenging, both statistically and physically based computational methods can precisely identify affinity-reducing mutations. In order to leverage this ability to design variants of a target protein with disrupted interactions, we developed the DisruPPI protein design method (DISRUpting Protein-Protein Interactions) to optimize combinations of mutations simultaneously for both disruption and stability, so that incorporated disruptive mutations do not inadvertently affect the target protein adversely. Results: Two existing methods for predicting mutational effects on binding, FoldX and INT5, were demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind databases of experimentally determined changes in binding free energy. DisruPPI was implemented to use an INT5-based disruption score integrated with an AMBER-based stability assessment and was applied to disrupt protein interactions in a set of different targets representing diverse applications. In retrospective evaluation with three different case studies, comparison of DisruPPI-designed variants to published experimental data showed that DisruPPI was able to identify more diverse interaction-disrupting and stability-preserving variants more efficiently and effectively than previous approaches. In prospective application to an interaction between enhanced green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants, all of which were shown to have significantly reduced nanobody binding while maintaining function and thermostability. This demonstrates that DisruPPI may be readily utilized for effective removal of known epitopes of therapeutically relevant proteins. Availability and implementation: DisruPPI is implemented in the EpiSweep package, freely available under an academic use license. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Mutação , Ligação Proteica , Proteínas/metabolismo , Software , Algoritmos , Anticorpos , Proteínas de Fluorescência Verde , Proteínas/genética
13.
MAbs ; 9(8): 1253-1261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933630

RESUMO

Gel microdroplet - fluorescence activated cell sorting (GMD-FACS) is an innovative high throughput screening platform for recombinant protein libraries, and we show here that GMD-FACS can overcome many of the limitations associated with conventional screening methods for antibody libraries. For example, phage and cell surface display benefit from exceptionally high throughput, but generally require high quality, soluble antigen target and necessitate the use of anchored antibody fragments. In contrast, the GMD-FACS assay can screen for soluble, secreted, full-length IgGs at rates of several thousand clones per second, and the technique enables direct screening against membrane protein targets in their native cellular context. In proof-of-concept experiments, rare anti-EGFR antibody clones were efficiently enriched from a 10,000-fold excess of anti-CCR5 clones in just three days. Looking forward, GMD-FACS has the potential to contribute to antibody discovery and engineering for difficult targets, such as ion channels and G protein-coupled receptors.


Assuntos
Anticorpos Monoclonais/imunologia , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina G/imunologia , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Proteínas de Membrana/metabolismo , Modelos Imunológicos , Biblioteca de Peptídeos , Receptores CCR5/genética , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
14.
Proc Natl Acad Sci U S A ; 114(26): E5085-E5093, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607051

RESUMO

Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 ß-lactamase (P99ßL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 109 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99ßL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.


Assuntos
Algoritmos , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Biblioteca de Peptídeos , beta-Lactamases/genética , Humanos , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , beta-Lactamases/imunologia
15.
IEEE Trans Biomed Eng ; 64(5): 972-979, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27352362

RESUMO

OBJECTIVE: Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. METHOD: This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 µg/ml and five concentrations of cells from 50 to 400 000 count per ml. RESULTS: A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 µg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. CONCLUSION: Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. SIGNIFICANCE: Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.


Assuntos
Nanopartículas de Magnetita/química , Neoplasias Experimentais/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Nanopartículas de Magnetita/ultraestrutura , Dinâmica não Linear , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Methods Mol Biol ; 1529: 375-398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27914063

RESUMO

Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.


Assuntos
Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Proteínas , Software , Simulação por Computador , Bases de Dados Genéticas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Modelos Moleculares , Conformação Proteica , Proteínas/genética , Proteínas/imunologia , Proteínas/farmacologia , Proteínas/uso terapêutico , Navegador , Fluxo de Trabalho
17.
Curr Opin Struct Biol ; 39: 79-88, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322891

RESUMO

Therapeutic proteins are powerful next-generation drugs able to effectively treat diverse and devastating diseases, but the development and use of biotherapeutics entails unique challenges and risks. In particular, protein drugs are subject to immune surveillance in the human body, and ensuing antidrug immune responses can cause a wide range of problems including altered pharmacokinetics, loss of efficacy, and even life-threating complications. Here we review recent progress in technologies for engineering deimmunized biotherapeutics, placing particular emphasis on deletion of immunogenic antibody and T cell epitopes via experimentally or computationally guided mutagenesis.


Assuntos
Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Imunização , Proteínas/química
18.
Protein Eng Des Sel ; 29(10): 419-426, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27334453

RESUMO

Humanization reduces the immunogenicity risk of therapeutic antibodies of non-human origin. Thermostabilization can be critical for clinical development and application of therapeutic antibodies. Here, we show that the computational antibody redesign method Computationally Driven Antibody Humanization (CoDAH) enables these two goals to be accomplished simultaneously and seamlessly. A panel of CoDAH designs for the murine parent of cetuximab, a chimeric anti-EGFR antibody, exhibited both substantially improved thermostabilities and substantially higher levels of humanness, while retaining binding activity near the parental level. The consistently high quality of the turnkey CoDAH designs, over a whole panel of variants, suggests that the computationally directed approach encapsulates key determinants of antibody structure and function.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Temperatura , Receptores ErbB/imunologia , Humanos , Estabilidade Proteica
19.
J Microencapsul ; 33(1): 64-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26642874

RESUMO

Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.


Assuntos
Citosina Desaminase , Enzimas Imobilizadas , Escherichia coli/enzimologia , Fluoruracila , Glioma/tratamento farmacológico , Pró-Fármacos , Alginatos/química , Alginatos/farmacologia , Animais , Linhagem Celular Tumoral , Células Imobilizadas/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Fluoruracila/química , Fluoruracila/farmacologia , Glioma/metabolismo , Glioma/patologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
20.
Mol Ther Methods Clin Dev ; 2: 15021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151066

RESUMO

Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme's own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...