Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(11): 3299-3310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526307

RESUMO

Quality by Design (QbD) principles play an increasingly important role in the pharmaceutical industry. Here, we used an analytical QbD (AQbD) approach to develop a capillary electrophoresis sodium dodecyl sulfate under reducing conditions (rCE-SDS), with the aim of replacing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) as release and stability test method for a commercialized monoclonal antibody product. Method development started with defining analytical method performance requirements as part of an analytical target profile, followed by a systematic risk assessment of method input parameters and their relation to defined method outputs. Based on this, design of experiments studies were performed to identify a method operable design region (MODR). The MODR could be leveraged to improve method robustness. In a bridging study, it was demonstrated that the rCE-SDS method is more sensitive than the legacy SDS-PAGE method, and a conversion factor could be established to compensate for an off-set due to the higher sensitivity, without losing the correlation to the historical data acquired with the former method. Overall, systematic application of analytical Quality by Design principles for designing and developing a new analytical method helped to elucidate the complex dependency of method outputs on its input parameters. The link of the method to product quality attributes and the definition of method performance requirements were found to be most relevant for derisking the analytical method switch, regarding impact on the control strategy.

2.
MAbs ; 15(1): 2151075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36519228

RESUMO

In this study, we report the isomerization of an aspartic acid residue in the complementarity-determining region (CDR) of crizanlizumab as a major degradation pathway. The succinimide intermediate and iso-aspartic acid degradation products were successfully isolated by ion exchange chromatography for characterization. The isomerization site was identified at a DG motif in the CDR by peptide mapping. The biological characterization of the isolated variants showed that the succinimide variant exhibited a loss in target binding and biological activity compared to the aspartic acid and iso-aspartic acid variants of the molecule. The influence of pH on this isomerization reaction was investigated using capillary zone electrophoresis. Below pH 6.3, the succinimide formation was predominant, whereas at pH values above 6.3, iso-aspartic acid was formed and the initial amounts of succinimide dropped to levels even lower than those observed in the starting material. Importantly, while the succinimide accumulated at long-term storage conditions of 2 to 8°C at pH values below 6.3, a complete hydrolysis of succinimide was observed at physiological conditions (pH 7.4, 37°C), resulting in full recovery of the biological activity. In this study, we demonstrate that the critical quality attribute succinimide with reduced potency has little or no impact on the efficacy of crizanlizumab due to the full recovery of the biological activity within a few hours under physiological conditions.


Assuntos
Ácido Aspártico , Succinimidas , Ácido Aspártico/química , Isomerismo , Succinimidas/análise , Succinimidas/química , Regiões Determinantes de Complementaridade/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...