Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8019): 49-53, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858545

RESUMO

Efforts to unveil the structure of the local interstellar medium and its recent star-formation history have spanned the past 70 years (refs. 1-6). Recent studies using precise data from space astrometry missions have revealed nearby, newly formed star clusters with connected origins7-12. Nonetheless, mapping young clusters across the entire sky back to their natal regions has been hindered by a lack of clusters with precise radial-velocity data. Here we show that 155 out of 272 (57%) high-quality young clusters13,14 within 1 kiloparsec of the Sun arise from three distinct spatial volumes. This conclusion is based on the analysis of data from the third Gaia release15 and other large-scale spectroscopic surveys. At present, dispersed throughout the solar neighbourhood, their past positions more than 30 million years ago reveal that these families of clusters each formed in one of three compact, massive star-forming complexes. One of these families includes all of the young clusters near the Sun-the Taurus and Scorpius-Centaurus star-forming complexes16,17. We estimate that more than 200 supernovae were produced from these families and argue that these clustered supernovae produced both the Local Bubble18 and the largest nearby supershell GSH 238+00+09 (ref. 19), both of which are clearly visible in modern three-dimensional dust maps20-22.

2.
Nature ; 601(7893): 334-337, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022612

RESUMO

For decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust1-3. However, the precise shape and extent of this shell4,5, the impetus and timescale for its formation6,7, and its relationship to nearby star formation8 have remained uncertain, largely due to low-resolution models of the local interstellar medium. Here we report an analysis of the three-dimensional positions, shapes and motions of dense gas and young stars within 200 pc of the Sun, using new spatial9-11 and dynamical constraints12. We find that nearly all of the star-forming complexes in the solar vicinity lie on the surface of the Local Bubble and that their young stars show outward expansion mainly perpendicular to the bubble's surface. Tracebacks of these young stars' motions support a picture in which the origin of the Local Bubble was a burst of stellar birth and then death (supernovae) taking place near the bubble's centre beginning approximately 14 Myr ago. The expansion of the Local Bubble created by the supernovae swept up the ambient interstellar medium into an extended shell that has now fragmented and collapsed into the most prominent nearby molecular clouds, in turn providing robust observational support for the theory of supernova-driven star formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...