Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(3): 035403, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29215347

RESUMO

In situ temperature-dependent laser-induced photoluminescence and dielectric measurements provide new evidence for the local occurrence of the α → ß phase transition near 500 K in the preserved crystalline parts of natural radiation-damaged titanite (sample E2335 with ~24% amorphous fraction, containing Fe and Al impurities). Photoluminescence spectroscopic measurements show an anomaly in the vicinity of 500 K. The temperature-dependent evolution of the real part of the electrical conductivity (σ) and the real (ε') and the imaginary (ε″) part of the complex dielectric permittivity (ε *) of titanite have been measured at various AC frequencies (~1.2-96.8 kHz). Despite the masking and smearing effect of impurities and defects, the temperature-dependent behaviour of ε' and ε″ around the transition temperature of the investigated natural titanite E2335 shows a remarkable similarity to that of the synthetic end-member material (see Zhang et al (1995 Phys. Chem. Miner. 22 41-9)). This study indicates the suitability of photoluminescence and impedance spectroscopy for the detection of phase transitions, even in heavily disordered systems.

2.
J Phys Condens Matter ; 25(11): 115402, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23407062

RESUMO

Effects of radiation damage and thermal annealing on the crystal structure of natural titanite (CaTiSiO(5)) were studied using Raman spectroscopy. The results show that well crystallized natural titanites generally have the P2(1)/a structure at the unit cell level, in contrast to the A2/a symmetry reported previously. Radiation caused by naturally incorporated impurities (such as U and Th) leads to structural damage and amorphization in titanite, as evidenced by a significant loss of band intensity, spectral broadening and frequency shifts. Additional bands (e.g. near 574 and 650 cm(-1)) occur in weakly or partially metamict titanite due to the formation of an intermediate phase (with the A2/a symmetry). Raman spectra of titanite thermal glasses showed features different from those of metamict titanite, especially in the Ti-O and Si-O stretching regions. The effect of thermal annealing is strongly affected by the initial degrees of damage that the sample experienced. Weakly damaged titanite samples showed that annealing leads to a structural recovery, and the spectral patterns of these recovered crystals are consistent with the P2(1)/a symmetry. Highly damaged titanite starts to recrystallize into an A2/a phase near 700-800 K, and additional structural modification occurs when annealed at 1300-1400 K, which involves significant change in broad Ti-O features. However, in terms of bandwidths, the metamict samples are far from fully recovered even on being annealed at 1300-1400 K.

3.
J Phys Condens Matter ; 24(5): 052202, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22193857

RESUMO

We have measured the dose dependence of the degree of amorphization of titanite, CaTiSiO(5). Titanite is an often metamict mineral which has been considered as a matrix for the encapsulation of radiogenic waste, such as Pu. The amorphous fraction p of geologically irradiated samples (ages between 0.3 and 1 Ga) follows p = 1 - exp(-B(a)D) where D is the total dose and the characteristic amorphization mass is B(a) = 2.7(3) × 10(-19) g. Amorphization follows the direct impact mechanism where each α-decay leads to a recoil of the radiogenic atoms (mostly Th and U), which then, in turn, displaces some 5000 atoms of the titanite matrix. The amorphization behaviour is almost identical with that of zircon, ZrSiO(4), which has a similar molecular mass. While the recrystallization mechanism and elastic behaviour of the two minerals are very different, we do not find significant differences for the amorphization mechanism. Our samples have undergone little reheating over their geological history, since heating over 800 K would lead to rapid recrystallization for which we have found no evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...