Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(11): 8409-14, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11115511

RESUMO

The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.


Assuntos
Cavéolas/química , Microdomínios da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/análise , Animais , Canal de Potássio Kv1.5 , Camundongos , Octoxinol/farmacologia , Canais de Potássio/fisiologia
2.
J Biol Chem ; 275(11): 7443-6, 2000 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-10713042

RESUMO

Ion channel targeting within neuronal and muscle membranes is an important determinant of electrical excitability. Recent evidence suggests that there exists within the membrane specialized microdomains commonly referred to as lipid rafts. These domains are enriched in cholesterol and sphingolipids and concentrate a number of signal transduction proteins such as nitric-oxide synthase, ligand-gated receptors, and multiple protein kinases. Here, we demonstrate that the voltage-gated K(+) channel Kv2.1, but not Kv4.2, targets to lipid rafts in both heterologous expression systems and rat brain. The Kv2.1 association with lipid rafts does not appear to involve caveolin. Depletion of cellular cholesterol alters the buoyancy of the Kv2.1 associated rafts and shifts the midpoint of Kv2.1 inactivation by nearly 40 mV without affecting peak current density or channel activation. The differential targeting of Kv channels to lipid rafts represents a novel mechanism both for the subcellular sorting of K(+) channels to regions of the membrane rich in signaling complexes and for modulating channel properties via alterations in lipid content.


Assuntos
Caveolinas , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Animais , Encéfalo/metabolismo , Caveolina 1 , Colesterol/metabolismo , Canais de Potássio de Retificação Tardia , Proteínas de Membrana/isolamento & purificação , Camundongos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos , Canais de Potássio Shab , Superfamília Shaker de Canais de Potássio , Canais de Potássio Shal
3.
J Biol Chem ; 274(36): 25355-61, 1999 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-10464262

RESUMO

The Kv1.5 K(+) channel is functionally altered by coassembly with the Kvbeta1.3 subunit, which induces fast inactivation and a hyperpolarizing shift in the activation curve. Here we examine kinase regulation of Kv1.5/Kvbeta1.3 interaction after coexpression in human embryonic kidney 293 cells. The protein kinase C inhibitor calphostin C (3 microM) removed the fast inactivation (66 +/- 1.9 versus 11 +/- 0.25%, steady state/peak current) and the beta-induced hyperpolarizing voltage shift in the activation midpoint (V(1/2)) (-21.9 +/- 1.4 versus -4.3 +/- 2.0 mV). Calphostin C had no effect on Kv1.5 alone with respect to inactivation kinetics and V(1/2). Okadaic acid, but not the inactive derivative, blunted both calphostin C effects (V(1/2) = -17.6 +/- 2.2 mV, 38 +/- 1.8% inactivation), consistent with dephosphorylation being required for calphostin C action. Calphostin C also removed the fast inactivation (57 +/- 2.6 versus 16 +/- 0.6%) and the shift in V(1/2) (-22.1 +/- 1.4 versus -2.1 +/- 2.0 mV) conferred onto Kv1.5 by the Kvbeta1.2 subunit, which shares only C terminus sequence identity with Kvbeta1. 3. In contrast, modulation of Kv1.5 by the Kvbeta2.1 subunit was unaffected by calphostin C. These data suggest that Kvbeta1.2 and Kvbeta1.3 subunit modification of Kv1.5 inactivation and voltage sensitivity require phosphorylation by protein kinase C or a related kinase.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio/fisiologia , Proteína Quinase C/fisiologia , Transdução de Sinais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana , Naftalenos/farmacologia , Ácido Okadáico/farmacologia , Técnicas de Patch-Clamp , Fosforilação , Canais de Potássio/química , Proteína Quinase C/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
4.
J Biol Chem ; 274(20): 13928-32, 1999 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-10318802

RESUMO

The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Sequência Consenso , Ativação Enzimática , Humanos , Canal de Potássio Kv1.3 , Canal de Potássio Kv1.5 , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Fosforilação , Serina/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...