Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 12(2): 125-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22300413

RESUMO

We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.


Assuntos
Contenção de Riscos Biológicos , Atividade Extraespaçonave , Trajes Espaciais , Humanos , Marte , Simulação de Ambiente Espacial
2.
Anesth Analg ; 101(5): 1533-1535, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244027

RESUMO

We determined the feasibility of laryngoscope-guided tracheal intubation (LG-TI) in microgravity obtained during parabolic flight and tested the hypothesis that LG-TI is similarly successful in the free-floating condition, with the patient's head gripped between the anesthesiologist's knees, as in the restrained condition, with the torso strapped to the surface. Three personnel with no experience in airway management or microgravity participated in the study. LG-TI of a sophisticated full-size manikin was attempted on seven occasions in each condition by each investigator after ground-based training. The parabolic flights, which took place in an Airbus 300 over the Atlantic Ocean, provided 23 s of microgravity. During this time, the investigator opened a box with airway equipment, performed LG-TI, and attached and held onto a self-inflating bag. The efficacy of ventilation was assessed during level flight by squeezing the bag and noting whether the manikin sensors indicated a tidal volume > or =300 mL. There were no differences in ventilation success (41% versus 33%) or time to successful insertion (both 18 s) between the free-floating and the restrained conditions. More than 90% of failures were caused by the inability to insert the tracheal tube within 23 s. There were no differences in performance among investigators. We conclude that LG-TI is feasible in microgravity obtained during parabolic flight, but the success rate is infrequent because of severe time restrictions. There were no differences in success rate between the free-floating condition, with the head gripped between the knees, and the restrained condition, with the torso strapped to the surface.


Assuntos
Intubação Intratraqueal/métodos , Laringoscópios , Voo Espacial , Ausência de Peso , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...