Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334329

RESUMO

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rim , Organoides , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/virologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/virologia , Lisinopril/farmacologia , Lisinopril/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/virologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Receptores de Coronavírus/metabolismo , Modelos Biológicos , Serina Endopeptidases/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco/citologia
2.
Nat Commun ; 13(1): 5943, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209212

RESUMO

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.


Assuntos
COVID-19 , Doenças Transmissíveis , Albuminas/metabolismo , Diferenciação Celular/fisiologia , Cisplatino/metabolismo , Cisplatino/farmacologia , Doenças Transmissíveis/metabolismo , Humanos , Rim , Néfrons/metabolismo , Organoides/metabolismo , SARS-CoV-2
3.
bioRxiv ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35665006

RESUMO

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.

4.
Cell Stem Cell ; 28(4): 671-684.e6, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33378647

RESUMO

During development, distinct progenitors contribute to the nephrons versus the ureteric epithelium of the kidney. Indeed, previous human pluripotent stem-cell-derived models of kidney tissue either contain nephrons or pattern specifically to the ureteric epithelium. By re-analyzing the transcriptional distinction between distal nephron and ureteric epithelium in human fetal kidney, we show here that, while existing nephron-containing kidney organoids contain distal nephron epithelium and no ureteric epithelium, this distal nephron segment alone displays significant in vitro plasticity and can adopt a ureteric epithelial tip identity when isolated and cultured in defined conditions. "Induced" ureteric epithelium cultures can be cryopreserved, serially passaged without loss of identity, and transitioned toward a collecting duct fate. Cultures harboring loss-of-function mutations in PKHD1 also recapitulate the cystic phenotype associated with autosomal recessive polycystic kidney disease.


Assuntos
Organogênese , Organoides , Diferenciação Celular , Epitélio , Humanos , Rim , Néfrons
5.
Reproduction ; 159(2): 105-113, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31751296

RESUMO

Primordial follicle oocytes are extremely vulnerable to DNA damage caused by exogenous agents, such as those commonly used to treat cancer. Consequently, female cancer patients often have diminished ovarian reserve, which if severe enough, can cause premature ovarian failure and early menopause. Advances in cancer therapies have resulted in significantly improved cancer survival rates; therefore, it is becoming increasingly important to devise strategies to protect the ovarian reserve from cancer treatments, to avoid loss of fertility and endocrine dysfunction. In this study, we aimed to determine whether supplementation with nicotinamide mononucleotide (NMN) could preserve the ovarian reserve following exposure to DNA-damaging cancer treatments. Adult female mice (n = 5-6/group) received saline or NMN (500 mg/kg/day) for 8 days. Mice were left untreated or exposed to γ-irradiation (0.1 Gy) or cyclophosphamide (150 mg/kg) on day 7 and ovaries and serum collected for analysis on day 12. We report that γ-irradiation treatment significantly reduced the number of primordial follicles, but supplementation with NMN did not prevent the observed follicle loss. Similarly, cyclophosphamide treatment significantly reduced primordial follicle numbers, but these losses were not prevented by NMN supplementation. In conclusion, depletion of the ovarian reserve following γ-irradiation or cyclophosphamide was not protected by NMN supplementation under the conditions employed in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...