Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(15): 154303, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887943

RESUMO

When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case of Rhodamine 6G, a dye with a significant Stokes shift, excitation of the upper polariton leads to a rapid localization of the energy into the fluorescing state of one of the molecules, from where the energy scatters into the lower polariton (radiative pumping), which then emits. In contrast, for excitonic J-aggregates with a negligible Stokes shift, the fluorescing state does not provide an efficient relaxation gateway. Instead, the relaxation is mediated by exchanging energy quanta matching the energy gap between the dark states and lower polariton into vibrational modes (vibrationally assisted scattering). To understand better how the fluorescing state of a molecule that is not strongly coupled to the cavity can transfer its excitation energy to the lower polariton in the radiative pumping mechanism, we performed multi-scale molecular dynamics simulations. The results of these simulations suggest that non-adiabatic couplings between uncoupled molecules and the polaritons are the driving force for this energy transfer process.

2.
J Chem Phys ; 138(16): 164304, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635135

RESUMO

Because of the high intensity, X-ray free electron lasers allow one to create and probe double core ionized states in molecules. The decay of these multiple core ionized states crucially determines the evolution of radiation damage in single molecule diffractive imaging experiments. Here we have studied the Auger decay in hydrides of first row elements after single and double core ionization by quantum mechanical ab initio calculations. In our approach the continuum wave function of the emitted Auger electron is expanded into spherical harmonics on a radial grid. The obtained decay rates of double K-shell vacancies were found to be systematically larger than those for the respective single K-shell vacancies, markedly exceeding the expected factor of two. This enhancement is attributed to the screening effects induced by the core hole. We propose a simple model, which is able to predict core hole decay rates in molecules with low Z elements based on the electron density in the vicinity of the core hole.


Assuntos
Amônia/química , Ácido Fluorídrico/química , Metano/química , Teoria Quântica , Água/química , Elétrons , Lasers
3.
J Chem Phys ; 136(14): 144304, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22502515

RESUMO

The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.


Assuntos
Teoria Quântica , Água/química , Elétrons , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...