Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 163: 107210, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442008

RESUMO

Urinary disease is a complex healthcare issue that continues to grow in prevalence. Urine tests have proven valuable in identifying conditions such as kidney disease, urinary tract infections, and lower abdominal pain. While machine learning has made significant strides in automating urinary tract infection detection, the accuracy of existing methods is hindered by concerns surrounding data privacy and the time-intensive nature of training and testing with large datasets. Our proposed method aims to address these limitations and achieve highly accurate urinary tract infection detection across various healthcare laboratories, while simultaneously minimizing data security risks and processing delays. To tackle this challenge, we approach the problem as a combinatorial optimization task. We optimize the accuracy objective as a concave function and minimize computation delay as a convex function. Our work introduces a framework enabled by federated learning and reinforcement learning strategy (FLRLS), leveraging lab urine data. FLRLS employs deterministic agents to optimize the exploration and exploitation of urinary data, while the actual determination of urinary tract infections is performed at a centralized, aggregated node. Experimental results demonstrate that our proposed method improves accuracy by 5% and reduces total delay. By combining federated learning, reinforcement learning, and a combinatorial optimization approach, we achieve both high accuracy and minimal delay in urinary tract infection detection.


Assuntos
Instalações de Saúde , Aprendizado de Máquina
2.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299983

RESUMO

These days, the use of digital healthcare has been growing in practice. Getting remote healthcare services without going to the hospital for essential checkups and reports is easy. It is a cost-saving and time-saving process. However, digital healthcare systems are suffering from security and cyberattacks in practice. Blockchain technology is a promising technology that can process valid and secure remote healthcare data among different clinics. However, ransomware attacks are still complex holes in blockchain technology and prevent many healthcare data transactions during the process on the network. The study presents the new ransomware blockchain efficient framework (RBEF) for digital networks, which can identify transaction ransomware attacks. The objective is to minimize transaction delays and processing costs during ransomware attack detection and processing. The RBEF is designed based on Kotlin, Android, Java, and socket programming on the remote process call. RBEF integrated the cuckoo sandbox static and dynamic analysis application programming interface (API) to handle compile-time and runtime ransomware attacks in digital healthcare networks. Therefore, code-, data-, and service-level ransomware attacks are to be detected in blockchain technology (RBEF). The simulation results show that the RBEF minimizes transaction delays between 4 and 10 min and processing costs by 10% for healthcare data compared to existing public and ransomware efficient blockchain technologies healthcare systems.


Assuntos
Blockchain , Hospitais , Simulação por Computador , Software , Atenção à Saúde
3.
Math Biosci Eng ; 19(1): 513-536, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903001

RESUMO

These days, the Industrial Internet of Healthcare Things (IIT) enabled applications have been growing progressively in practice. These applications are ubiquitous and run onto the different computing nodes for healthcare goals. The applications have these tasks such as online healthcare monitoring, live heartbeat streaming, and blood pressure monitoring and need a lot of resources for execution. In IIoHT, remote procedure call (RPC) mechanism-based applications have been widely designed with the network and computational delay constraints to run healthcare applications. However, there are many requirements of IIoHT applications such as security, network and computation, and failure efficient RPC with optimizing the quality of services of applications. In this study, the work devised the lightweight RPC mechanism for IIoHT applications and considered the hybrid constraints in the system. The study suggests the secure hybrid delay scheme (SHDS), which schedules all healthcare workloads under their deadlines. For the scheduling problem, the study formulated this problem based on linear integer programming, where all constraints are integer, as shown in the mathematical model. Simulation results show that the proposed SHDS scheme and lightweight RPC outperformed the hybrid for IIoHT applications and minimized 50% delays compared to existing RPC and their schemes.


Assuntos
Internet das Coisas , Simulação por Computador , Atenção à Saúde , Frequência Cardíaca , Modelos Teóricos
4.
Math Biosci Eng ; 18(6): 7344-7362, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34814252

RESUMO

These days, healthcare applications on the Internet of Medical Things (IoMT) network have been growing to deal with different diseases via different sensors. These healthcare sensors are connecting to the various healthcare fog servers. The hospitals are geographically distributed and offer different services to the patients from any ubiquitous network. However, due to the full offloading of data to the insecure servers, two main challenges exist in the IoMT network. (i) Data security of workflows healthcare applications between different fog healthcare nodes. (ii) The cost-efficient and QoS efficient scheduling of healthcare applications in the IoMT system. This paper devises the Cost-Efficient Service Selection and Execution and Blockchain-Enabled Serverless Network for Internet of Medical Things system. The goal is to choose cost-efficient services and schedule all tasks based on their QoS and minimum execution cost. Simulation results show that the proposed outperform all existing schemes regarding data security, validation by 10%, and cost of application execution by 33% in IoMT.


Assuntos
Blockchain , Internet das Coisas , Segurança Computacional , Atenção à Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...