Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Toxicol ; 4: 977147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353200

RESUMO

Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.

2.
Front Nutr ; 9: 882222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811943

RESUMO

The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces "chemical cocktails" composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.

3.
Chem Res Toxicol ; 35(5): 731-749, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35405071

RESUMO

After ingestion of food commodities, the gastrointestinal tract (GIT) poses the first barrier against xenobiotics and pathogens. Therefore, it is regularly confronted with external stressors potentially affecting the inflammatory response and the epithelial barrier. Alternaria mycotoxins such as alternariol (AOH) and altertoxin II (ATX-II) are frequently occurring food and feed contaminants that are described for their immunomodulatory capacities. Hence, this study aimed at exploring the effect of AOH and ATX-II as single compounds or binary mixtures on the immune response and epithelial homeostasis in noncancerous colon epithelial cells HCEC-1CT. Both toxins suppressed mRNA levels of proinflammatory mediators interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and secretion of IL-8, as well as mRNA levels of the matrix metallopeptidase 2 (MMP-2). Binary combinations of AOH and ATX-II reduced the response of the single toxins. Additionally, AOH and ATX-II modified immunolocalization of transmembrane proteins such as integrin ß1, zona occludens 1 (ZO-1), claudin 4 (Cldn 4), and occludin (Ocln), which support colonic tissue homeostasis and intestinal barrier function. Moreover, the cellular distribution of ZO-1 was affected by ATX-II. Mechanistically, these effects could be traced back to the involvement of several transcription factors. AOH activated the nuclear translocation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid 2-related factor 2 (Nrf2), governing cell metabolic competence and structural integrity. This was accompanied by altered distribution of the NF-κB p65 protein, an important regulator of inflammatory response. ATX-II also induced AhR and Nrf2 translocation, albeit failing to substantiate the effect of AOH on the colonic epithelium. Hence, both toxins coherently repress the intestinal immune response on the cytokine transcriptional and protein levels. Furthermore, both mycotoxins affected the colonic epithelial integrity by altering the cell architecture.


Assuntos
Alternaria , Micotoxinas , Alternaria/química , Alternaria/metabolismo , Colo , Células Epiteliais/metabolismo , Imunidade , Interleucina-8/metabolismo , Lactonas/metabolismo , Micotoxinas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...