Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(5): e96430, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24805352

RESUMO

Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae) have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics of their secretions are important adaptations to a terrestrial lifestyle.


Assuntos
Anomuros/anatomia & histologia , Sensilas/anatomia & histologia , Olfato/fisiologia , Animais , Condutos Olfatórios/fisiologia , Sensilas/fisiologia
2.
PLoS One ; 8(11): e81518, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260580

RESUMO

Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors are correlated to distinct antennal lobe (AL) phenotypes. Two worker phenotypes differ in number of olfactory glomeruli in the AL and the presence or absence of an extremely large glomerulus (macroglomerulus), involved in trail-pheromone reception. The males' AL contains three macroglomeruli which are presumably involved in detection of sex-pheromone components. We investigated the antennal transcriptome data of all major castes (males, queens and workers) and two worker subcastes (large and tiny workers). In order to identify putative odorant receptor genes involved in pheromone detection, we identified differentially expressed odorant receptor genes (OR-genes) using custom microarrays. In total, we found 185 OR-gene fragments that are clearly related to ORs and we identified orthologs for 70 OR-genes. Among them one OR-gene differs in relative expression between the two worker subcastes by a factor of >3 and thus is a very promising candidate gene for the trail-pheromone receptor. Using the relative expression of OR-genes in males versus queens, we identified 2 candidates for sex-pheromone receptor genes in males. In addition, we identified genes from all other chemosensory related gene families (13 chemosensory protein genes, 8 odorant binding protein genes, 2 sensory-neuron membrane protein genes, 7 ionotropic receptor genes, 2 gustatory receptor genes), and we found ant-specific expansions in the chemosensory protein gene family. In addition, a large number of genes involved in immune defense exhibited differential expression across the three different castes, and some genes even between the two worker subcastes.


Assuntos
Formigas/genética , Expressão Gênica , Proteínas de Insetos/genética , Feromônios/genética , Filogenia , Receptores Odorantes/genética , Animais , Formigas/anatomia & histologia , Formigas/classificação , Formigas/imunologia , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/fisiologia , Tamanho Corporal , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/classificação , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Feromônios/classificação , Folhas de Planta , Receptores Odorantes/classificação , Caracteres Sexuais
3.
Front Neurosci ; 7: 266, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24478616

RESUMO

In the course of evolution, crustaceans adapted to a large variety of habitats. Probably the most extreme habitat shift was the transition from water to land, which occurred independently in at least five crustacean lineages. This substantial change in life style required adaptations in sensory organs, as the medium conveying stimuli changed in both chemical and physical properties. One important sensory organ in crustaceans is the first pair of antennae, housing their sense of smell. Previous studies on the crustacean transition from water to land focused on morphological, behavioral, and physiological aspects but did not analyze gene expression. Our goal was to scrutinize the molecular makeup of the crustacean antennulae, comparing the terrestrial Coenobita clypeatus and the marine Pagurus bernhardus. We sequenced and analyzed the antennal transcriptomes of two hermit crab species. Comparison to previously published datasets of similar tissues revealed a comparable quality and GO annotation confirmed a highly similar set of expressed genes in both datasets. The chemosensory gene repertoire of both species displayed a similar set of ionotropic receptors (IRs), most of them belonging to the divergent IR subtype. No binding proteins, gustatory receptors (GRs) or insect-like olfactory receptors (ORs) were present. Additionally to their olfactory function, the antennules were equipped with a variety of pathogen defense mechanisms, producing relevant substances on site. The overall similarity of both transcriptomes is high and does not indicate a general shift in genetic makeup connected to the change in habitat. IRs seem to perform the task of olfactory detection in both hermit crab species studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...