Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Parkinsonism Relat Disord ; 21(10): 1247-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26234953

RESUMO

BACKGROUND: This study was conducted to better understand the development of clinical efficacy and impedance levels in the long-term course of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD). METHODS: In this retrospective study of twenty PD patients, the motor part of the Unified Parkinson's Disease Rating Scale was periodically assessed i) after withdrawal of medication and inactivated stimulation, ii) after withdrawal of medication with activated stimulation and iii) after challenge with l-Dopa during activated stimulation up to 13 years after surgery. RESULTS: STN-DBS with or without medication significantly improved motor function up to 13 years after surgery. The contribution of axial symptoms increased over time. While the stimulation parameters were kept constant, the therapeutic impedances progressively declined. CONCLUSION: STN-DBS in PD remains effective in the long-term course of the disease. Constant current stimulation might be preferable over voltage-controlled stimulation, as it would alleviate the impact of impedance changes on the volume of tissue activated.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Impedância Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tempo
3.
Cerebellum ; 13(1): 121-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23943521

RESUMO

The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.


Assuntos
Cerebelo/fisiopatologia , Terapia por Estimulação Elétrica , Estimulação Magnética Transcraniana , Animais , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/terapia , Terapia por Estimulação Elétrica/métodos , Humanos , Processos Mentais/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos
4.
Acta Neurol Scand ; 122(1): 27-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20003084

RESUMO

AIM: Manifest hepatic encephalopathy (HE) goes along with motor symptoms such as ataxia, mini-asterixis, and asterixis. The relevance of motor impairments in cirrhotics without and with minimal HE (mHE) is still a matter of debate. PATIENTS AND METHODS: We tested three different groups of patients with liver cirrhosis: no signs of HE (HE 0), mHE, and manifest HE grade 1 according to the West Haven criteria (HE 1). All patients (n = 24) and 11 healthy control subjects were neuropsychometrically tested including critical flicker frequency (CFF), a reliable measure for HE. Motor abilities were assessed using Fahn Tremor Scale and International Ataxia Rating Scale. Fastest alternating index finger movements were analyzed for frequency and amplitude. RESULTS: Statistical analyses showed an effect of HE grade on tremor and ataxia (P < 0.01). Additionally, both ratings yielded strong negative correlation with CFF (P < 0.01, R = -0.5). Analysis of finger movements revealed an effect of HE grade on movement frequency (P < 0.03). Moreover, decreasing movement frequency and increasing movement amplitude parallel decreasing CFF (P < 0.01, R = 0.6). CONCLUSION: Our results indicate that ataxia, tremor, and slowing of finger movements are early markers for cerebral dysfunction in HE patients even prior to neuropsychometric alterations becoming detectable.


Assuntos
Discinesias/diagnóstico , Discinesias/etiologia , Encefalopatia Hepática/complicações , Cirrose Hepática/complicações , Idoso , Alcoolismo/complicações , Ataxia/diagnóstico , Ataxia/etiologia , Feminino , Dedos/fisiologia , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tremor/diagnóstico , Tremor/etiologia
5.
Ther Adv Neurol Disord ; 2(6): 20-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21180627

RESUMO

During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson's disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multi-disciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...