Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 432(7015): 1 p following 291; discussion following 291, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15568212

RESUMO

In conventional superconductivity, sharp phonon modes (oscillations in the crystal lattice) are exchanged between electrons within a Cooper pair, enabling superconductivity. A critical question in the study of copper oxides with high critical transition temperature (Tc) is whether such sharp modes (which may be more general, including, for example, magnetic oscillations) also play a critical role in the pairing and hence the superconductivity. Hwang et al. report evidence that sharp modes (either phononic or magnetic in origin) are not important for superconductivity in these materials, but we show here that their conclusions are undermined by the insensitivity of their experiment to a crucial physical effect.

2.
Phys Rev Lett ; 87(11): 117002, 2001 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-11531545

RESUMO

We present high resolution angle resolved photoemission data of the bilayer superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) showing a clear doubling of the near E(F) bands. This splitting approaches zero along the (0,0)-->(pi,pi) nodal line and is not observed in single layer Bi(2)Sr(2)CuO(6+delta) (Bi2201), indicating that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 110 meV near the (pi,0) point. The existence of these two bands also helps to clear up the recent controversy concerning the topology of the Fermi surface.

3.
Science ; 292(5521): 1509-13, 2001 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-11326084

RESUMO

We used high-resolution angle-resolved photoemission spectroscopy to reveal the Fermi surface and key transport parameters of the metallic state of the layered colossal magnetoresistive oxide La1.2Sr1.8Mn2O7. With these parameters, the calculated in-plane conductivity is nearly one order of magnitude larger than the measured direct current conductivity. This discrepancy can be accounted for by including the pseudogap, which removes at least 90% of the spectral weight at the Fermi energy. Key to the pseudogap and to many other properties are the parallel straight Fermi surface sections, which are highly susceptible to nesting instabilities. These nesting instabilities produce nanoscale fluctuating charge/orbital modulations, which cooperate with Jahn-Teller distortions and compete with the electron itinerancy favored by double exchange.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...