Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 372: 48-56, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030081

RESUMO

Single cell technologies, lineage tracing mouse models and advanced imaging techniques unequivocally improved the resolution of the cellular landscape of atherosclerosis. Although the discovery of the heterogeneous nature of the cellular plaque architecture has undoubtedly improved our understanding of the specific cellular states in atherosclerosis progression, it also adds more complexity to current and future research and will change how we approach future drug development. In this review, we will discuss how the revolution of new single cell technologies allowed us to map the cellular networks in the plaque, but we will also address current (technological) limitations that confine us to identify the cellular drivers of the disease and to pinpoint a specific cell state, cell subset or cell surface antigen as new candidate drug target for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo
2.
Autophagy ; 11(11): 2014-2032, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26391655

RESUMO

Autophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis. Tissue-specific deletion of the essential autophagy gene Atg7 in murine VSMCs (atg7-/- VSMCs) caused accumulation of SQSTM1/p62 and accelerated the development of stress-induced premature senescence as shown by cellular and nuclear hypertrophy, CDKN2A-RB-mediated G1 proliferative arrest and senescence-associated GLB1 activity. Transfection of SQSTM1-encoding plasmid DNA in Atg7+/+ VSMCs induced similar features, suggesting that accumulation of SQSTM1 promotes VSMC senescence. Interestingly, atg7-/- VSMCs were resistant to oxidative stress-induced cell death as compared to controls. This effect was attributed to nuclear translocation of the transcription factor NFE2L2 resulting in upregulation of several antioxidative enzymes. In vivo, defective VSMC autophagy led to upregulation of MMP9, TGFB and CXCL12 and promoted postinjury neointima formation and diet-induced atherogenesis. Lesions of VSMC-specific atg7 knockout mice were characterized by increased total collagen deposition, nuclear hypertrophy, CDKN2A upregulation, RB hypophosphorylation, and GLB1 activity, all features typical of cellular senescence. To conclude, autophagy is crucial for VSMC function, phenotype, and survival. Defective autophagy in VSMCs accelerates senescence and promotes ligation-induced neointima formation and diet-induced atherogenesis, implying that autophagy inhibition as therapeutic strategy in the treatment of neointimal stenosis and atherosclerosis would be unfavorable. Conversely, stimulation of autophagy could be a valuable new strategy in the treatment of arterial disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...