Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 869339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646717

RESUMO

Listeria monocytogenes is an opportunistic intracellular pathogen causing an infection termed listeriosis. Despite the low incidence of listeriosis, the high mortality rate in individuals at risk makes this bacterium one of the most dangerous foodborne pathogens. Reports about a relapse of infection after antibiotic treatment suggest that the bacteria may be able to evade antibiotic treatment and persist as a dormant, antibiotic-tolerant subpopulation. In this study, we observed intracellular generation of antibiotic-resistant L-forms of Listeria monocytogenes following Ampicillin treatment of Listeria monocytogenes infected cells. Detection and identification of intracellular Listeria L-forms was performed by a combination of fluorescence in-situ hybridization and confocal laser scanning microscopy. Using micromanipulation, it was possible to isolate single intracellular L-form cells that following transfer into fresh medium gave rise to pure cultures. In conclusion, the results obtained here provide strong evidence that antibiotic treatment of infected host cells can induce the formation of L-forms from intracellular Listeria monocytogenes. Furthermore, our results suggest that intracellular L-forms persist inside host cells and that they represent viable bacteria, which are still able to grow and proliferate.


Assuntos
Listeria monocytogenes , Listeriose , Ampicilina/farmacologia , Antibacterianos/farmacologia , Humanos , Listeriose/tratamento farmacológico , Listeriose/microbiologia
2.
mSystems ; 5(3)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518192

RESUMO

Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.

3.
J Proteome Res ; 19(4): 1647-1662, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091902

RESUMO

Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.


Assuntos
Listeria monocytogenes , Listeria , Proteogenômica , Proteínas de Bactérias/genética , Genótipo , Listeria/genética , Listeria monocytogenes/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...