Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 11(11): e050725, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848513

RESUMO

INTRODUCTION: The undiminished need for more effective cancer treatments stimulates the development of novel cancer immunotherapy candidates. The archetypical cancer immunotherapy would induce robust, targeted and long-lasting immune responses while simultaneously circumventing immunosuppression in the tumour microenvironment. For this purpose, we developed a novel immunomodulatory nanomedicine: PRECIOUS-01. As a PLGA-based nanocarrier, PRECIOUS-01 encapsulates a tumour antigen (NY-ESO-1) and an invariant natural killer T cell activator to target and augment specific antitumour immune responses in patients with NY-ESO-1-expressing advanced cancers. METHODS AND ANALYSIS: This open-label, first-in-human, phase I dose-escalation trial investigates the safety, tolerability and immune-modulatory activity of increasing doses of PRECIOUS-01 administered intravenously in subjects with advanced NY-ESO-1-expressing solid tumours. A total of 15 subjects will receive three intravenous infusions of PRECIOUS-01 at a 3-weekly interval in three dose-finding cohorts. The trial follows a 3+3 design for the dose-escalation steps to establish a maximum tolerated dose (MTD) and/or recommended phase II dose (RP2D). Depending on the toxicity, the two highest dosing cohorts will be extended to delineate the immune-related parameters as a readout for pharmacodynamics. Subjects will be monitored for safety and the occurrence of dose-limiting toxicities. If the MTD is not reached in the planned dose-escalation cohorts, the RP2D will be based on the observed safety and immune-modulatory activity as a pharmacodynamic parameter supporting the RP2D. The preliminary efficacy will be evaluated as an exploratory endpoint using the best overall response rate, according to Response Evaluation Criteria in Solid Tumors V.1.1. ETHICS AND DISSEMINATION: The Dutch competent authority (CCMO) reviewed the trial application and the medical research ethics committee (CMO Arnhem-Nijmegen) approved the trial under registration number NL72876.000.20. The results will be disseminated via (inter)national conferences and submitted for publication to a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT04751786.


Assuntos
Nanopartículas , Neoplasias , Antígenos de Neoplasias , Ensaios Clínicos Fase I como Assunto , Humanos , Imunidade , Dose Máxima Tolerável , Nanopartículas/efeitos adversos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Expert Rev Clin Pharmacol ; 7(1): 53-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24308784

RESUMO

There has been great interest over the past two decades in developing gene therapies (GTs) to treat a variety of diseases; however, translating research findings into clinical treatments have proved to be a challenge. A major milestone in the development of GT has been achieved with the approval of alipogene tiparvovec (Glybera(®)) in Europe for the treatment of familial lipoprotein lipase deficiency. At this important stage with the evolution of GT into the clinic, this review will examine the safety aspects GT with adeno-associated virus (AAV) vectors. The topics that will be covered include acute reactions, immunological reactions to the AAV capsid and expressed transgene, viral biodistribution and shedding, DNA integration and carcinogenicity. These safety aspects of GT will be discussed with a focus on alipogene tiparvovec, in addition to other AAV vector GT products currently in clinical development.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Animais , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Humanos , Hiperlipoproteinemia Tipo I/terapia , Eliminação de Partículas Virais
3.
Clin Cancer Res ; 16(4): 1159-69, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20145185

RESUMO

PURPOSE: To test the hypothesis that simultaneous, equipotent inhibition of epidermal growth factor receptor (EGFR; erbB1), erbB2 (human epidermal growth factor receptor 2), and erbB3 receptor signaling, using the novel small-molecule inhibitor AZD8931, will deliver broad antitumor activity in vitro and in vivo. EXPERIMENTAL DESIGN: A range of assays was used to model erbB family receptor signaling in homodimers and heterodimers, including in vitro evaluation of erbB kinase activity, erbB receptor phosphorylation, proliferation in cells, and in vivo testing in a human tumor xenograft panel, with ex vivo evaluation of erbB phosphorylation and downstream biomarkers. Gefitinib and lapatinib were used to compare the pharmacological profile of AZD8931 with other erbB family inhibitors. RESULTS: In vitro, AZD8931 showed equipotent, reversible inhibition of EGFR (IC(50), 4 nmol/L), erbB2 (IC(50), 3 nmol/L), and erbB3 (IC(50), 4 nmol/L) phosphorylation in cells. In proliferation assays, AZD8931 was significantly more potent than gefitinib or lapatinib in specific squamous cell carcinoma of the head and neck and non-small cell lung carcinoma cell lines. In vivo, AZD8931 inhibited xenograft growth in a range of models while significantly affecting EGFR, erbB2, and erbB3 phosphorylation and downstream signaling pathways, apoptosis, and proliferation. CONCLUSIONS: AZD8931 has a unique pharmacologic profile providing equipotent inhibition of EGFR, erbB2, and erbB3 signaling and showing greater antitumor activity than agents with a narrower spectrum of erbB receptor inhibition in specific preclinical models. AZD8931 provides the opportunity to investigate whether simultaneous inhibition of erbB receptor signaling could be of utility in the clinic, particularly in the majority of solid tumors that do not overexpress erbB2.


Assuntos
Receptores ErbB/antagonistas & inibidores , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gefitinibe , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Lapatinib , Camundongos , Camundongos Nus , Camundongos SCID , Quinazolinas/agonistas , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EPMA J ; 1(4): 529-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23199107

RESUMO

The National Health System in the UK has evolved to become one of the largest healthcare systems in the world. At the time of writing of this review (August 2010) the UK government in its 2010 White Paper "Equity and excellence: Liberating the NHS" has announced a strategy on how it will "create a more responsive, patient-centred NHS which achieves outcomes that are among the best in the world". This review article presents an overview of the UK healthcare system as it currently stands, with emphasis on Predictive, Preventive and Personalised Medicine elements. It aims to serve as the basis for future EPMA articles to expand on and present the changes that will be implemented within the NHS in the forthcoming months.

5.
Cancer Res ; 67(14): 6956-64, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638907

RESUMO

The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N'-diphenyl urea with an IC(50) of 0.88 mumol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of RET but not of lines without RET mutations. NVP-AST487 induced a dose-dependent growth inhibition of xenografts of NIH3T3 cells expressing oncogenic RET, and of the MTC cell line TT in nude mice. MTCs secrete calcitonin, a useful indicator of tumor burden. Human plasma calcitonin levels derived from the TT cell xenografts were inhibited shortly after treatment, when tumor volume was still unchanged, indicating that the effects of RET kinase inhibition on calcitonin secretion were temporally dissociated from its tumor-inhibitory properties. Accordingly, NVP-AST487 inhibited calcitonin gene expression in vitro in TT cells, in part, through decreased gene transcription. These data point to a previously unknown physiologic role of RET signaling on calcitonin gene expression. Indeed, the RET ligands persephin and GDNF robustly stimulated calcitonin mRNA, which was blocked by pretreatment with NVP-AST487. Antagonists of RET kinase activity in patients with MTC may result in effects on plasma calcitonin that are either disproportionate or dissociated from the effects on tumor burden, because RET kinase mediates a physiologic pathway controlling calcitonin secretion. The role of traditional tumor biomarkers may need to be reassessed as targeted therapies designed against oncoproteins with key roles in pathogenesis are implemented.


Assuntos
Antineoplásicos/farmacologia , Calcitonina/antagonistas & inibidores , Carbanilidas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/enzimologia , Animais , Calcitonina/metabolismo , Linhagem Celular Tumoral , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Transplante de Neoplasias , Fosforilação
6.
J Bone Miner Metab ; 23 Suppl: 90-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15984422

RESUMO

Characterization of trabecular bone structures requires necropsy of animals followed by a labor-intense histomorphometric or ex vivo micro-CT analysis. We tested the novel vivaCT40 from Scanco Medical AG (Bassersdorf, Switzerland), which allows monitoring such changes repeatedly in anesthetized rats and mice. Postmenopausal osteoporosis: in 8-month-old ovariectomized (OVX) rats, the vivaCT40 was capable of picking up the decrease in trabecular bone volume and trabecular thinning as well as the decrease in the number of trabecular elements as a function of time. The bone anabolic effects of parathyroid hormone [hPTH(1-34)], which resulted in an increase in trabecular thickness but not their number, as well as the bone protective effect of the two antiresorptive agents zoledronic acid (ZA) and 17-alpha ethinylestradiol (aEE), were detected correctly with the vivaCT40. Adjuvans arthritis: the vivaCT40 allowed measuring trabecular bone loss caused by periarticular inflammation in a rat model of adjuvans arthritis and demonstrated the bone protective effect of dexamethasone (DM). In addition, it was possible to image the subtle erosive lesions in subchondral bone caused by the inflammatory processes. Tumor osteolysis: the vivaCT40 allowed monitoring of the progressive osteolytic response following the local administration of 4T1luc2000 tumor cells into the tibia metaphysis of nude mice. The potent protective effect of ZA on tumor osteolysis was demonstrated. In summary, the new vivaCT40 can monitor the effects of known agents and diseases such as osteoporosis, inflammatory arthritis, and tumor invasion on 3-D trabecular microarchitecture accurately, repeatedly, reliably, and quickly in anesthetized rats and mice. The scanner represents a breakthrough for noninvasive imaging and structural measurements in small rodents.


Assuntos
Doenças Ósseas/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Doenças Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Fêmur/patologia , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Ratos , Tíbia/patologia , Tomografia Computadorizada por Raios X/instrumentação
7.
Cancer Res ; 64(14): 4931-41, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15256466

RESUMO

Aberrant epidermal growth factor receptor (EGFR) and ErbB2 expression are associated with advanced disease and poor patient prognosis in many tumor types (breast, lung, ovarian, prostate, glioma, gastric, and squamous carcinoma of head and neck). In addition, a constitutively active EGFR type III deletion mutant has been identified in non-small cell lung cancer, glioblastomas, and breast tumors. Hence, members of the EGFR family are viewed as promising therapeutic targets in the fight against cancer. In a similar vein, vascular endothelial growth factor (VEGF) receptor kinases are also promising targets in terms of an antiangiogenic treatment strategy. AEE788, obtained by optimization of the 7H-pyrrolo[2,3-d]pyrimidine lead scaffold, is a potent combined inhibitor of both epidermal growth factor (EGF) and VEGF receptor tyrosine kinase family members on the isolated enzyme level and in cellular systems. At the enzyme level, AEE788 inhibited EGFR and VEGF receptor tyrosine kinases in the nm range (IC(50)s: EGFR 2 nm, ErbB2 6 nm, KDR 77 nm, and Flt-1 59 nm). In cells, growth factor-induced EGFR and ErbB2 phosphorylation was also efficiently inhibited (IC(50)s: 11 and 220 nm, respectively). AEE788 demonstrated antiproliferative activity against a range of EGFR and ErbB2-overexpressing cell lines (including EGFRvIII-dependent lines) and inhibited the proliferation of epidermal growth factor- and VEGF-stimulated human umbilical vein endothelial cells. These properties, combined with a favorable pharmacokinetic profile, were associated with a potent antitumor activity in a number of animal models of cancer, including tumors that overexpress EGFR and or ErbB2. Oral administration of AEE788 to tumor-bearing mice resulted in high and persistent compound levels in tumor tissue. Moreover, AEE788 efficiently inhibited growth factor-induced EGFR and ErbB2 phosphorylation in tumors for >72 h, a phenomenon correlating with the antitumor efficacy of intermittent treatment schedules. Strikingly, AEE788 also inhibited VEGF-induced angiogenesis in a murine implant model. Antiangiogenic activity was also apparent by measurement of tumor vascular permeability and interstitial leakage space using dynamic contrast enhanced magnetic resonance imaging methodology. Taken together, these data indicate that AEE788 has potential as an anticancer agent targeting deregulated tumor cell proliferation as well as angiogenic parameters. Consequently, AEE788 is currently in Phase I clinical trials in oncology.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Purinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Células 3T3 BALB , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação , Purinas/farmacocinética , Receptor ErbB-2/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Opin Investig Drugs ; 3(4): 648-51, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12090738

RESUMO

SuperGen Inc is developing a cyclodextrin-based reformulation of mitomycin C (MitoExtra) for the potential treatment of gastic, pancreatic, breast lung and colorectal cancers. In April 2002, the NDA was pending approval from the US FDA after a March 2002 filing of a final response including data from a phase II trial [447618]. MitoExtra is a proprietary reformulation of the approved anticancer drug mitomycin C. SuperGen's reformulation is based on technology designed to improve the handling characteristics and safety profile of mitomycin C and other anticancer drugs by enhancing the drug's stability in solution form and 'shielding' it at the injection site [205482]. In a phase II study in patients with advanced solid tumors, MitoExtra showed no evidence of diminished efficacy or unexpected toxicity [447618]. In April 2000, SuperGen' was issued US-06048845, protecting the company's proprietary Extra technology platform [363494].


Assuntos
Antineoplásicos/farmacologia , Mitomicina/farmacologia , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Química Farmacêutica , Ensaios Clínicos como Assunto , Ciclodextrinas , Excipientes , Humanos , Injeções Intravenosas , Mitomicina/efeitos adversos , Mitomicina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...