Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(24): 244501, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922874

RESUMO

We report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to 20 times Earth's gravity. The transition frequency between the gravity and capillary regimes is thus increased up to one decade as predicted theoretically. A frequency power-law wave spectrum is observed in each regime and is found to be independent of the gravity level and of the wave steepness. While the timescale separation required by weak turbulence is well verified experimentally regardless of the gravity level, the nonlinear and dissipation timescales are found to be independent of the scale, as a result of the finite size effects of the system (large-scale container modes) that are not taken currently into account theoretically.

2.
Eur Phys J E Soft Matter ; 41(11): 137, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30467607

RESUMO

In the study of microscopic flows, self-propulsion has been particularly topical in recent years, with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing, micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel these microrobots, as demonstrated by recent experiments using the proximity of an interface, or the interface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates how forces at the interface can be used to generate locomotion. Surface swimmers ranging from the microscopic scale to typically the capillary length are covered. Two systems are then discussed in greater detail. The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming structures. Two previously studied configurations, triangular and collinear, are discussed and contrasted. A new interpretation for the triangular swimmer is presented. Then, the non-monotonic influence of surface tension and viscosity is evidenced in the collinear case. Finally, a new system is introduced. It is a magnetically powered, centimeter-sized piece that swims similarly to water striders.

3.
Adv Colloid Interface Sci ; 255: 84-93, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28754380

RESUMO

This paper presents an overview and discussion of magnetocapillary self-assemblies. New results are presented, in particular concerning the possible development of future applications. These self-organizing structures possess the notable ability to move along an interface when powered by an oscillatory, uniform magnetic field. The system is constructed as follows. Soft magnetic particles are placed on a liquid interface, and submitted to a magnetic induction field. An attractive force due to the curvature of the interface around the particles competes with an interaction between magnetic dipoles. Ordered structures can spontaneously emerge from these conditions. Furthermore, time-dependent magnetic fields can produce a wide range of dynamic behaviours, including non-time-reversible deformation sequences that produce translational motion at low Reynolds number. In other words, due to a spontaneous breaking of time-reversal symmetry, the assembly can turn into a surface microswimmer. Trajectories have been shown to be precisely controllable. As a consequence, this system offers a way to produce microrobots able to perform different tasks. This is illustrated in this paper by the capture, transport and release of a floating cargo, and the controlled mixing of fluids at low Reynolds number.

4.
Eur Phys J E Soft Matter ; 40(3): 29, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28315141

RESUMO

Ferromagnetic particles are incorporated in a thin soft elastic matrix. A lamella, made of this smart material, is studied experimentally and modeled. We show herein that thin films can be actuated using an external magnetic field applied through the system. The system is found to be switchable since subcritical pitchfork bifurcation is discovered in the beam shape when the magnetic field orientation is modified. Strong magnetoelastic effects can be obtained depending on both field strength and orientation. Our results provide versatile ways to contribute to many applications from the microfabrication of actuators to soft robotics. As an example, we created a small synthetic octopus piloted by an external magnetic field.

5.
Sci Rep ; 5: 16035, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26538006

RESUMO

Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

6.
Rev Chir Orthop Reparatrice Appar Mot ; 94(7): 670-7, 2008 Nov.
Artigo em Francês | MEDLINE | ID: mdl-18984124

RESUMO

PURPOSE OF THE STUDY: The main reason for revision of Charnley type total hip arthroplasty is socket loosening related to high polyethylene wear and periacetabular osteolysis. In these situations, the monobloc cemented stem is frequently not loosened and it is not clear whether the femoral component can be retained during the revision procedure. The aim of this study was to evaluate surface and sphericity damage to the femoral head of a prospective and consecutive series of revision total hip arthroplasties during which the cemented monobloc femoral component has been systematically revised. MATERIALS AND METHODS: We performed 22 revisions of both components of Charnley type cemented total hip arthroplasties. In all cases, the 22.2 mm head of the monobloc femoral component was made of 316 L stainless steel. The international standard for such femoral heads includes an average surface roughness (Ra) of 0.05 microm, a total roughness (Rt) value of 0.5 microm and a sphericity of +/-5 microm. The mean age of the patients at the time of the index arthroplasty was 51.3 years. The average time to revision was 14.8 years (seven to 25 years). The reasons for revision included isolated socket loosening (12), extensive periacetabular osteolysis without socket loosening (two), recurrent dislocation associated with socket loosening (one), sepsis without implant loosening (one), loosening of both components (one), and isolated loosening of the femoral component (five). Hence, 15 of the 22 (68.2%) femoral components could theoretically have been retained. The surface roughness of the femoral heads was evaluated using a contact-type profilometer. For each head, the apex and two zones, either macroscopically scratched or with loss of the mirror finish, were analyzed. Moreover, the sphericity of the heads was measured using a spherometer. RESULTS: The stem explanted after recurrent dislocation was analyzed separately as the femoral head had major scratches. The mean Ra and Rt of the series at the apex was 0.029 and 0.876 microm, respectively. The mean Ra and Rt of the series for the macroscopically damaged areas was 0.05 microm and 1.540 microm, respectively. The mean sphericity of the series was 7.2 microm. Hence among the 22 explanted stems, 10 femoral heads (45.4%) had Ra or Rt apex and 18 (81.8%) Ra or Rt scratched area values beyond ISO standards, respectively. Sphericity was greater than +/-5mm for 13 of the 22 femoral heads (59.1%). With the numbers available, the age at the time of the index arthroplasty, the BMI, the time and the reason for revision were not significantly associated with the degree of femoral head damage for both roughness and sphericity parameters. DISCUSSION: Retaining the femoral component during revision of the total hip arthroplasty including a monobloc femoral component is theoretically an interesting alternative. However, femoral head surface damage occurring in vivo would have lead us to retain severely scratched heads in over 80% of the hips, and heads with abnormal roughness and sphericity values in over 90% of the hips. Bases upon our results, we recommend systematically revising the femoral component during revision THA including a monobloc stem, irrespective of the reason for revision.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Adolescente , Adulto , Idoso , Cimentos Ósseos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Desenho de Prótese , Reoperação , Propriedades de Superfície , Adulto Jovem
7.
J Bone Joint Surg Br ; 89(11): 1439-45, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17998178

RESUMO

We carried out a prospective randomised study designed to compare the penetration rate of acetabular polyethylene inserts of identical design but different levels of cross-linking at a minimum of four years follow-up. A total of 102 patients (102 hips) were randomised to receive either highly cross-linked Durasul, or contemporary Sulene polyethylene inserts at total hip replacement. A single blinded observer used the Martell system to assess penetration of the femoral head. At a mean follow-up of 4.9 years (4.2 to 6.1) the mean femoral head penetration rate was 0.025 mm/year (SD 0.128) in the Durasul group compared with 0.106 mm/year (SD 0.109) in the Sulene group (Mann-Whitney test, p = 0.0027). The mean volumetric penetration rate was 29.24 mm(3)/year (SD 44.08) in the Durasul group compared with 53.32 mm(3)/year (SD 48.68) in the Sulene group. The yearly volumetric penetration rate was 55% lower in the Durasul group (Mann-Whitney test, p = 0.0058). Longer term results are needed to investigate whether less osteolysis will occur.


Assuntos
Acetábulo/cirurgia , Prótese de Quadril , Polietileno/uso terapêutico , Acetábulo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Análise de Falha de Equipamento , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Polietileno/análise , Polietileno/metabolismo , Complicações Pós-Operatórias , Desenho de Prótese/normas , Método Simples-Cego , Estatísticas não Paramétricas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...