Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(20): 5626-5644, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37712324

RESUMO

The Astyanax mexicanus complex includes two different morphs, a surface- and a cave-adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize the timing and the number of events that gave rise to the evolution of these cave-adapted ecotypes. Here, using RADseq and genome-wide sequencing, we assessed the phylogenetic relationships, genetic structure and gene flow events between the cave and surface Astyanax mexicanus populations, to estimate the tempo and mode of evolution of the cave-adapted ecotypes. We also evaluated the body shape evolution across different cave lineages using geometric morphometrics to examine the role of phylogenetic signal versus environmental pressures. We found strong evidence of parallel evolution of cave-adapted ecotypes derived from two separate lineages of surface fish and hypothesize that there may be up to four independent invasions of caves from surface fish. Moreover, a strong congruence between the genetic structure and geographic distribution was observed across the cave populations, with the Sierra de Guatemala the region exhibiting most genetic drift among the cave populations analysed. Interestingly, we found no evidence of phylogenetic signal in body shape evolution, but we found support for parallel evolution in body shape across independent cave lineages, with cavefish from the Sierra de El Abra reflecting the most divergent morphology relative to surface and other cavefish populations.

2.
BMC Ecol Evol ; 23(1): 41, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626324

RESUMO

BACKGROUND: The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations. RESULTS: To investigate these traits, we created a novel feeding behavior assay wherein bite impressions could be obtained. We determined that fish with an underbite leave larger bite impressions with an increase in the number of tooth marks. Capitalizing on the ability to produce hybrids from surface and cavefish crosses, we investigated genes underlying these segregating orofacial traits by performing Quantitative Trait Loci (QTL) analysis with F2 hybrids. We discovered significant QTL for bite (underbite vs. overbite) that mapped to a single region of the Astyanax genome. Within this genomic region, multiple genes exhibit coding region mutations, some with known roles in bone development. Further, we determined that there is evidence that this genomic region is under natural selection. CONCLUSIONS: This work highlights cavefish as a valuable genetic model for orofacial patterning and will provide insight into the genetic regulators of jaw and tooth development.


Assuntos
Má Oclusão Classe III de Angle , Animais , Peixes , Mapeamento Cromossômico , Crânio , Locos de Características Quantitativas/genética
3.
Nature ; 620(7976): 1071-1079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587343

RESUMO

Identifying therapeutics to delay, and potentially reverse, age-related cognitive decline is critical in light of the increased incidence of dementia-related disorders forecasted in the growing older population1. Here we show that platelet factors transfer the benefits of young blood to the ageing brain. Systemic exposure of aged male mice to a fraction of blood plasma from young mice containing platelets decreased neuroinflammation in the hippocampus at the transcriptional and cellular level and ameliorated hippocampal-dependent cognitive impairments. Circulating levels of the platelet-derived chemokine platelet factor 4 (PF4) (also known as CXCL4) were elevated in blood plasma preparations of young mice and humans relative to older individuals. Systemic administration of exogenous PF4 attenuated age-related hippocampal neuroinflammation, elicited synaptic-plasticity-related molecular changes and improved cognition in aged mice. We implicate decreased levels of circulating pro-ageing immune factors and restoration of the ageing peripheral immune system in the beneficial effects of systemic PF4 on the aged brain. Mechanistically, we identified CXCR3 as a chemokine receptor that, in part, mediates the cellular, molecular and cognitive benefits of systemic PF4 on the aged brain. Together, our data identify platelet-derived factors as potential therapeutic targets to abate inflammation and rescue cognition in old age.


Assuntos
Envelhecimento , Cognição , Disfunção Cognitiva , Doenças Neuroinflamatórias , Nootrópicos , Fator Plaquetário 4 , Animais , Masculino , Camundongos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Doenças Neuroinflamatórias/sangue , Doenças Neuroinflamatórias/complicações , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/prevenção & controle , Fator Plaquetário 4/sangue , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/farmacologia , Fator Plaquetário 4/uso terapêutico , Nootrópicos/sangue , Nootrópicos/metabolismo , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Plasma/química , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Transcrição Gênica/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
4.
Nat Commun ; 14(1): 2557, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137902

RESUMO

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.


Assuntos
Characidae , Animais , Characidae/genética , Mutação , Fenótipo , Adaptação Fisiológica/genética , Genótipo , Evolução Biológica , Cavernas
5.
Front Cell Dev Biol ; 11: 1074616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875772

RESUMO

The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed 'asymmetric' noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history.

6.
Trends Endocrinol Metab ; 34(2): 106-118, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567228

RESUMO

As allosteric complexes, G-protein-coupled receptors (GPCRs) respond to extracellular stimuli and pleiotropically couple to intracellular transducers to elicit signaling pathway-dependent effects in a process known as biased signaling or functional selectivity. One such GPCR, the ghrelin receptor (GHSR1a), has a crucial role in restoring and maintaining metabolic homeostasis during disrupted energy balance. Thus, pharmacological modulation of GHSR1a bias could offer a promising strategy to treat several metabolism-based disorders. Here, we summarize current evidence supporting GHSR1a functional selectivity in vivo and highlight recent structural data. We propose that precise determinations of GHSR1a molecular pharmacology and pathway-specific physiological effects will enable discovery of GHSR1a drugs with tailored signaling profiles, thereby providing safer and more effective treatments for metabolic diseases.


Assuntos
Receptores de Grelina , Transdução de Sinais , Humanos , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Transdução de Sinais/fisiologia , Grelina/metabolismo
7.
Am J Emerg Med ; 64: 204.e5-204.e7, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369048

RESUMO

BACKGROUND: Alkyl nitrite analogs known as "poppers" have been inhaled recreationally for decades. They are available to be purchased from gas stations marketed as "nail polish remover not for human consumption". These rapid-onset, short-acting, vasodilators cause the user to experience euphoria, dizziness, tachycardia and flushing. While chronic use may lead to problems such as methemoglobinemia or neuropathy, nitrites rarely lead to acute life-threatening side effects such as ventricular dysrhythmias. CASE REPORT: We report a case of ventricular fibrillation cardiac arrest in a 21-year-old male after inhaling from a solution labeled to contain isobutyl nitrite, a rarely reported adverse effect of "popper" use. The product was analytically confirmed to contain mainly isobutyl alcohol, volatile hydrocarbons, and isobutyl nitrite, as well as smaller quantities of other substances. The patient was also prescribed escitalopram and hydroxyzine may have contributed. Return of spontaneous circulation was achieved in the field after initiation of CPR and defibrillation. He was found to have no clear predisposition to arrythmias during his care or on follow up. CONCLUSION: Alkyl nitrite "popper" users and clinicians should be aware that products labeled to contain nitrites may contain volatile hydrocarbons along with nitrites and have the potential to cause arrhythmia.


Assuntos
Nitritos , Fibrilação Ventricular , Masculino , Humanos , Adulto Jovem , Adulto , Fibrilação Ventricular/induzido quimicamente , Fibrilação Ventricular/terapia , Arritmias Cardíacas/induzido quimicamente
8.
Dev Biol ; 493: 13-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347313

RESUMO

Charles Breder, a pioneering researcher of blind Mexican cavefish was the first to note extreme variation in the facial skeleton of this intriguing subterranean-dwelling organism. Using a system of polar coordinate plots, he identified substantial dysmorphic changes affecting bones of the orbital skeleton. A complication of his landmark publication from 1944 was an error in the number of orbital bones depicted for this species. Intriguingly, however, he proposed an unknown "organizing force" likely influences final bone position and associated dysmorphia. At the time this was merely hypothetical. Roughly eight decades since its publication, however, insights into sensory influences on facial bone development may explain dysmorphia and variation in bone numbers for Astyanax cavefish. A morphological association between mechano-sensory neuromasts of the lateral line and dermal bones of the facial skeleton had been appreciated in the classical literature, but the polarity of this interaction has long remained unclear. Here, we propose that sensory-skeletal integration between sensory neuromasts and bones explain the incomplete numbers of bones, and dysmorphic features such as fusion between neighboring elements. We propose that in closely-related surface fish (and most teleost fish) this developmental coupling enables the sensory and skeletal systems to become integrated into a functional unit over the course of life history. In this opinion article, we discuss the relevance of this (poorly understood) phenomenon as a potential evolutionary source of variation in the facial bone structures of taxa across deep geologic time. We provide three potential explanations for the error in Breder's drawings, that may be explained by natural developmental variation documented in other related species. Moreover, we argue that the natural variation in this "evolutionary" model system is useful for explaining diverse cranial features by uniting aberrations occurring during embryogenesis with long-term adult dysmorphia.


Assuntos
Characidae , Sistema da Linha Lateral , Animais , Crânio , Mecanorreceptores , Evolução Biológica
9.
Proc Biol Sci ; 289(1984): 20221641, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36476002

RESUMO

The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.


Assuntos
Cipriniformes , Animais , Filogenia
10.
Sci Rep ; 12(1): 21422, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503898

RESUMO

Genetically tractable animal models provide needed strategies to resolve the biological basis of drug addiction. Intravenous self-administration (IVSA) is the gold standard for modeling psychostimulant and opioid addiction in animals, but technical limitations have precluded the widespread use of IVSA in mice. Here, we describe IVSA paradigms for mice that capture the multi-stage nature of the disorder and permit predictive modeling. In these paradigms, C57BL/6J mice with long-standing indwelling jugular catheters engaged in cocaine- or remifentanil-associated lever responding that was fixed ratio-dependent, dose-dependent, extinguished by withholding the drug, and reinstated by the presentation of drug-paired cues. The application of multivariate analysis suggested that drug taking in both paradigms was a function of two latent variables we termed incentive motivation and discriminative control. Machine learning revealed that vulnerability to drug seeking and relapse were predicted by a mouse's a priori response to novelty, sensitivity to drug-induced locomotion, and drug-taking behavior. The application of these behavioral and statistical-analysis approaches to genetically-engineered mice will facilitate the identification of neural circuits driving addiction susceptibility and relapse and focused therapeutic development.


Assuntos
Comportamento de Procura de Droga , Camundongos , Animais , Camundongos Endogâmicos C57BL , Administração Intravenosa , Autoadministração , Modelos Animais
11.
Sci Rep ; 12(1): 3735, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260642

RESUMO

Animals inhabiting extreme environments allow the powerful opportunity to examine adaptive evolution in response to diverse pressures. One such pressure is reduced oxygen, commonly present at high-altitude and subterranean environments. Cave-dwelling animals must also deal with darkness and starvation, both of which have been rigorously studied as key forces driving the evolution of cave-associated traits. Interestingly, hypoxia as an environmental pressure has received less attention. Here we examined putatively adaptive phenotypes evolving in a freshwater teleost fish, Astyanax mexicanus, which includes both surface- and cave-dwelling forms. This model system also provides the opportunity to identify convergent responses to hypoxia, owing to the presence of numerous natural and independently-colonised cave populations, alongside closely-related surface conspecifics. The focus of this study is hemoglobin, an essential molecule for oxygen transport and delivery. We found that multiple cave populations harbor a higher concentration of hemoglobin in their blood, which is coincident with an increase in cave morph erythrocyte size compared to surface fish. Interestingly, both cave and surface morphs have comparable numbers of erythrocytes per unit of blood, suggesting elevated hemoglobin is not due to overproduction of red blood cells. Alternatively, owing to an increased cell area of erythrocytes in cavefish, we reason that they contain more hemoglobin per erythrocyte. These findings support the notion that cavefish have adapted to hypoxia in caves through modulation of both hemoglobin production and erythrocyte size. This work reveals an additional adaptive feature of Astyanax cavefish, and demonstrates that coordinated changes between cellular architecture and molecular changes are necessary for organisms evolving under intense environmental pressure.


Assuntos
Characidae , Oxigênio , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Cavernas , Characidae/fisiologia , Eritrócitos , Hipóxia
12.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718440

RESUMO

The T1R and T2R families of G protein-coupled receptors (GPCRs) initiate tastant perception by signaling via guanine nucleotide exchange and hydrolysis performed by associated heterotrimeric G proteins (Gαßγ). Heterotrimeric G protein signal termination is sped up by Gα-directed GTPase-accelerating proteins (GAPs) known as the Regulators of G protein Signaling (RGS proteins). Of this family, RGS21 is highly expressed in lingual epithelial cells and we have shown it acting in vitro to decrease the potency of bitterants on cultured cells. However, constitutive RGS21 loss in mice reduces organismal response to GPCR-mediated tastants-opposite to expectations arising from observed in vitro activity of RGS21 as a GAP and inhibitor of T2R signaling. Here, we show reduced quinine aversion and reduced sucrose preference by mice lacking RGS21 does not result from post-ingestive effects, as taste-salient brief-access tests confirm the reduced bitterant aversion and reduced sweetener preference seen using two-bottle choice testing. Eliminating Rgs21 expression after chemosensory system development, via tamoxifen-induced Cre recombination in eight week-old mice, led to a reduction in quinine aversive behavior that advanced over time, suggesting that RGS21 functions as a negative regulator to sustain stable bitter tastant reception. Consistent with this notion, we observed downregulation of multiple T2R proteins in the lingual tissue of Rgs21-deficient mice. Reduced tastant-mediated responses exhibited by mice lacking Rgs21 expression either since birth or in adulthood has highlighted the potential requirement for a GPCR GAP to maintain the full character of tastant signaling, likely at the level of mitigating receptor downregulation.


Assuntos
Proteínas RGS , Animais , Proteínas de Ligação ao GTP , Camundongos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Paladar
13.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664263

RESUMO

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Assuntos
Adaptação Fisiológica/genética , Characidae/embriologia , Characidae/genética , Olho/embriologia , Herança Multifatorial/genética , Animais , Evolução Biológica , Cavernas , Mapeamento Cromossômico , Evolução Molecular , Edição de Genes , Genoma/genética , Proteínas de Homeodomínio/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Locos de Características Quantitativas/genética
14.
BMC Ecol Evol ; 21(1): 45, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731021

RESUMO

BACKGROUND: Natural model systems are indispensable for exploring adaptations in response to environmental pressures. Sinocyclocheilus of China, the most diverse cavefish clade in the world (75 species), provide unique opportunities to understand recurrent evolution of stereotypic traits (such as eye loss and sensory expansion) in the context of a deep and diverse phylogenetic group. However, they remain poorly understood in terms of their morphological evolution. Therefore, we explore key patterns of morphological evolution, habitat utilization and geographic distribution in these fishes. RESULTS: We constructed phylogenies and categorized 49 species based on eye-related condition (Blind, Micro-eyed, and Normal-eyed), habitat types (Troglobitic-cave-restricted; Troglophilic-cave-associated; Surface-outside caves) and existence of horns. Geometric-morphometric analyses show Normal-eyed morphs with fusiform shapes segregating from Blind/Micro-eyed deeper bodied morphs along the first principal-component axis; second axis accounts for shape complexity related to horns. The body shapes showed a significant association with eye-related condition and horn, but not habitat types. Ancestral reconstructions suggest at least three independent origins of Blind morphs, each with different levels of modification in relation to their ancestral Normal-eyed morphs; Sinocyclocheilus are also pre-adapted for cave dwelling. Our geophylogeny shows an east-to-west diversification spanning Pliocene and Pleistocene, with early-diversifying Troglobitic species dominating subterranean habitats of karstic plains whereas predominantly Surface forms inhabit hills to the west. Evolutionary rates analyses suggest that lineages leading to Blind morphs were characterized by significant rate shifts, such as a slowdown in body size evolution and a 5-20 fold increase in rate of eye regression, possibly explained by limited resource availability. Body size and eye size have undergone reversals, but not horns, a trait entailing considerable time to form. CONCLUSIONS: Sinocyclocheilus occupied cave habitats in response to drying associated with aridification of China during late Miocene and the Pliocene. The prominent cave-adaptations (eye-regression, horn-evolution) occur in clades associated with the extensive subterranean cave system in Guangxi and Guizhou provinces. Integration of morphology, phylogeny, rate analyses, molecular-dating and distribution show not only several remarkable patterns of evolution, but also interesting exceptions to these patterns signifying the diversification of Sinocyclocheilus as an invaluable model system to explore evolutionary novelty.


Assuntos
Evolução Biológica , Cyprinidae , Animais , Cavernas , China , Filogenia
15.
Anesth Analg ; 132(2): 406-419, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332902

RESUMO

A serious adverse effect of prescription opioid analgesics is addiction, both to these analgesics and to illicit drugs like heroin that also activate the µ-opioid receptor (MOR). Opioid use disorder (OUD) and opioid overdose deaths represent a current American health crisis, and the prescription of opioid analgesics has contributed significantly to this crisis. While prescription opioids are highly effective analgesics, there currently exists no facile way to use them for extended periods without the risk of addiction. If addiction caused by MOR-targeting analgesics could be blocked by blending in a new "antiaddiction" ingredient that does not diminish analgesia and does not introduce its own therapeutically limiting side effects, then continued clinical use of prescription opioids for treating pain could be maintained (or even enhanced) instead of curtailed. In this narrative review, we contextualize this hypothesis, first with a brief overview of the current American opioid addiction crisis. The neurobiology of 2 key receptors in OUD development, MOR and the κ-opioid receptor (KOR), is then discussed to highlight the neuroanatomical features and circuitry in which signal transduction from these receptors lie in opposition-creating opportunities for pharmacological intervention in curtailing the addictive potential of MOR agonism. Prior findings with mixed MOR/KOR agonists are considered before exploring new potential avenues such as biased KOR agonists. New preclinical data are highlighted, demonstrating that the G protein-biased KOR agonist nalfurafine reduces the rewarding properties of MOR-targeting analgesics and enhances MOR-targeting analgesic-induced antinociception. Finally, we discuss the recent discovery that a regulator of G protein signaling (namely, RGS12) is a key component of signaling bias at KOR, presenting another drug discovery target toward identifying a single agent or adjuvant to be added to traditional opioid analgesics that could reduce or eliminate the addictive potential of the latter drug.


Assuntos
Desenho de Fármacos , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Animais , Humanos , Estrutura Molecular , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/química , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/psicologia , Transtornos Relacionados ao Uso de Opioides/etiologia , Proteínas RGS/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
16.
Front Vet Sci ; 7: 565346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195542

RESUMO

This study examined the relationships between hair cortisol concentrations (HCC) and sex, age, nutritional status (as determined by body condition scores, or BCS), and body mass (geometric mean calculated from morphometric measurements), as well as the potential influence of hair pigmentation (light, dark, or agouti/mixed) on HCC in dogs of the Bosawas Biosphere Reserve, Nicaragua. The dogs examined in this study live in a marginal environment where disease, malnutrition, and mortality rates are high. For fur color, HCC was significantly higher in light fur than in than dark and mixed fur (p < 0.001). In addition, BCS scores were found to have a negative effect on HCC (p < 0.001). Measures of sex and body size exhibited inconclusive effects on HCC, and when compared to adult dogs, juvenile dogs did not exhibit significantly different HCC. Repeated measures of dogs over time reveal a moderate intra-class correlation, suggesting that there are unmeasured sources of individual-level heterogeneity. These findings imply a need to account for fur color in studies of HCC in dogs, and the study suggests an overlooked relationship between cortisol and body condition scores in undernourished dogs in diverse settings.

17.
J Psychopharmacol ; 34(12): 1393-1407, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32842837

RESUMO

BACKGROUND: Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice. This effect on DAT prompted us to investigate whether the serotonin transporter (SERT) exhibits similar alterations upon RGS12 loss in C57BL/6J mice. AIMS: Does RGS12 loss affect (a) hyperlocomotion to the preferentially SERT-targeting psychostimulant 3,4-methylenedioxymethamphetamine (MDMA), (b) SERT expression and function in relevant brain regions, and/or (c) serotonergically modulated behaviors? METHODS: Open-field and spontaneous home-cage locomotor activities were quantified. 5-HT, 5-HIAA, and SERT levels in brain-region homogenates, as well as SERT expression and function in brain-region tissue preparations, were measured using appropriate biochemical assays. Serotonergically modulated behaviors were assessed using forced swim and tail suspension paradigms, elevated plus and elevated zero maze tests, and social interaction assays. RESULTS: RGS12-null mice displayed no hyperlocomotion to 10 mg/kg MDMA. There were brain region-specific alterations in SERT expression and function associated with RGS12 loss. Drug-naïve RGS12-null mice displayed increases in both anxiety-like and anti-depressive-like behaviors. CONCLUSION: RGS12 is a critical modulator of serotonergic neurotransmission and serotonergically modulated behavior in mice; lack of hyperlocomotion to low dose MDMA in RGS12-null mice is related to an alteration of steady-state SERT expression and 5-HT uptake.


Assuntos
Comportamento Animal/fisiologia , Locomoção/fisiologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Proteínas RGS/fisiologia , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Proteínas RGS/genética , Serotoninérgicos/administração & dosagem , Comportamento Social
18.
J Exp Zool B Mol Dev Evol ; 334(7-8): 397-404, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32638529

RESUMO

A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.


Assuntos
Evolução Biológica , Characidae , Modelos Animais , Animais , Comportamento Animal , Cavernas , Characidae/genética , Characidae/crescimento & desenvolvimento , Characidae/fisiologia , Escuridão , Doenças dos Peixes
19.
J Exp Zool B Mol Dev Evol ; 334(7-8): 518-529, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32372488

RESUMO

Extreme environments often result in the evolution of dramatic adaptive features. The Mexican tetra, Astyanax mexicanus, includes 30 different populations of cave-dwelling forms that live in perpetual darkness. As a consequence, many populations have evolved eye loss, reduced pigmentation, and amplification of nonvisual sensory systems. Closely-related surface-dwelling morphs demonstrate typical vision, pigmentation, and sensation. Transcriptomic assessments in this system have revealed important developmental changes associated with the cave morph, however, they have not accounted for photic rearing conditions. Prior studies reared individuals under a 12:12 hr light/dark (LD) cycle. Here, we reared cavefish under constant darkness (DD) for 5+ years. From these experimental individuals, we performed mRNA sequencing and compared gene expression of surface fish reared under LD conditions to cavefish reared under DD conditions to identify photic-dependent gene expression differences. Gene Ontology enrichment analyses revealed a number of previously underappreciated cave-associated changes impacting blood physiology and olfaction. We further evaluated the position of differentially expressed genes relative to QTL positions from prior studies and found several candidate genes associated with these ecologically relevant lighting conditions. In sum, this work highlights photic conditions as a key environmental factor impacting gene expression patterns in blind cave-dwelling fish.


Assuntos
Characidae/fisiologia , Transcriptoma , Animais , Cavernas , Characidae/genética , Characidae/metabolismo , Escuridão , Meio Ambiente , Perfilação da Expressão Gênica , Luz , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma/genética , Transcriptoma/fisiologia , Transcriptoma/efeitos da radiação
20.
J Exp Zool B Mol Dev Evol ; 334(7-8): 450-462, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32030873

RESUMO

Life in complete darkness has driven the evolution of a suite of troglobitic features in the blind Mexican cavefish Astyanax mexicanus, such as eye and pigmentation loss. While regressive evolution is a hallmark of obligate cave-dwelling organisms, constructive (or augmented) traits commonly arise as well. The cavefish cranium has undergone extensive changes compared with closely-related surface fish. These alterations are rooted in both cranial bones and surrounding sensory tissues such as enhancements in the gustatory and lateral line systems. Cavefish also harbor numerous cranial bone asymmetries: fluctuating asymmetry of individual bones and directional asymmetry in a dorsal bend of the skull. This asymmetry is mirrored by the asymmetrical patterning of mechanosensory neuromasts. We explored the relationship between facial bones and neuromasts using in vivo fluorescent colabeling and microcomputed tomography. We found an increase in neuromast density within dermal bone boundaries across three distinct populations of cavefish compared to surface-dwelling fish. We also show that eye loss disrupts early neuromast patterning, which in turn impacts the development of dermal bones. While cavefish exhibit alterations in cranial bone and neuromast patterning, each population varied in the severity. This variation may reflect observed differences in behavior across populations. For instance, a bend in the dorsal region of the skull may expose neuromasts to water flow on the opposite side of the face, enhancing sensory input and spatial mapping in the dark.


Assuntos
Evolução Biológica , Characidae/anormalidades , Anormalidades Craniofaciais/veterinária , Animais , Anoftalmia/veterinária , Cavernas , Characidae/anatomia & histologia , Escuridão , Ossos Faciais/anormalidades , Imageamento Tridimensional , Característica Quantitativa Herdável , Crânio/anormalidades , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...